TY - JOUR A1 - Radchuk, Viktoriia A1 - Reed, Thomas A1 - Teplitsky, Celine A1 - van de Pol, Martijn A1 - Charmantier, Anne A1 - Hassall, Christopher A1 - Adamik, Peter A1 - Adriaensen, Frank A1 - Ahola, Markus P. A1 - Arcese, Peter A1 - Miguel Aviles, Jesus A1 - Balbontin, Javier A1 - Berg, Karl S. A1 - Borras, Antoni A1 - Burthe, Sarah A1 - Clobert, Jean A1 - Dehnhard, Nina A1 - de Lope, Florentino A1 - Dhondt, Andre A. A1 - Dingemanse, Niels J. A1 - Doi, Hideyuki A1 - Eeva, Tapio A1 - Fickel, Jörns A1 - Filella, Iolanda A1 - Fossoy, Frode A1 - Goodenough, Anne E. A1 - Hall, Stephen J. G. A1 - Hansson, Bengt A1 - Harris, Michael A1 - Hasselquist, Dennis A1 - Hickler, Thomas A1 - Jasmin Radha, Jasmin A1 - Kharouba, Heather A1 - Gabriel Martinez, Juan A1 - Mihoub, Jean-Baptiste A1 - Mills, James A. A1 - Molina-Morales, Mercedes A1 - Moksnes, Arne A1 - Ozgul, Arpat A1 - Parejo, Deseada A1 - Pilard, Philippe A1 - Poisbleau, Maud A1 - Rousset, Francois A1 - Rödel, Mark-Oliver A1 - Scott, David A1 - Carlos Senar, Juan A1 - Stefanescu, Constanti A1 - Stokke, Bard G. A1 - Kusano, Tamotsu A1 - Tarka, Maja A1 - Tarwater, Corey E. A1 - Thonicke, Kirsten A1 - Thorley, Jack A1 - Wilting, Andreas A1 - Tryjanowski, Piotr A1 - Merila, Juha A1 - Sheldon, Ben C. A1 - Moller, Anders Pape A1 - Matthysen, Erik A1 - Janzen, Fredric A1 - Dobson, F. Stephen A1 - Visser, Marcel E. A1 - Beissinger, Steven R. A1 - Courtiol, Alexandre A1 - Kramer-Schadt, Stephanie T1 - Adaptive responses of animals to climate change are most likely insufficient JF - Nature Communications N2 - Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-10924-4 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Salleh, Faezah Mohd A1 - Ramos-Madrigal, Jazmin A1 - Penaloza, Fernando A1 - Liu, Shanlin A1 - Sinding, Mikkel-Holger S. A1 - Patel, Riddhi P. A1 - Martins, Renata A1 - Lenz, Dorina A1 - Fickel, Jörns A1 - Roos, Christian A1 - Shamsir, Mohd Shahir A1 - Azman, Mohammad Shahfiz A1 - Lim, Burton K. A1 - Rossiter, Stephen J. A1 - Wilting, Andreas A1 - Gilbert, M. Thomas P. T1 - An expanded mammal mitogenome dataset from Southeast Asia JF - Gigascience N2 - Background: Findings: Approximately 55 gigabases of raw sequence were generated. From this data we assembled 72 complete mitogenome sequences, with an average depth of coverage of 102.9x and 55.2x for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Conclusion: KW - invertebrate-derived (iDNA) KW - metabarcoding KW - GenBank KW - Taxonomic assignment Y1 - 2017 SN - 2047-217X VL - 6 IS - 8 SP - 1 EP - 19 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Weyrich, Alexandra A1 - Jeschek, Marie A1 - Schrapers, Katharina T. A1 - Lenz, Dorina A1 - Chung, Tzu Hung A1 - Ruebensam, Kathrin A1 - Yasar, Sermin A1 - Schneemann, Markus A1 - Ortmann, Sylvia A1 - Jewgenow, Katarina A1 - Fickel, Jörns T1 - Diet changes alter paternally inherited epigenetic pattern in male Wild guinea pigs JF - Environmental Epigenetics N2 - Epigenetic modifications, of which DNA methylation is the most stable, are a mechanism conveying environmental information to subsequent generations via parental germ lines. The paternal contribution to adaptive processes in the offspring might be crucial, but has been widely neglected in comparison to the maternal one. To address the paternal impact on the offspring’s adaptability to changes in diet composition, we investigated if low protein diet (LPD) in F0 males caused epigenetic alterations in their subsequently sired sons. We therefore fed F0 male Wild guinea pigs with a diet lowered in protein content (LPD) and investigated DNA methylation in sons sired before and after their father’s LPD treatment in both, liver and testis tissues. Our results point to a ‘heritable epigenetic response’ of the sons to the fathers’ dietary change. Because we detected methylation changes also in the testis tissue, they are likely to be transmitted to the F2 generation. Gene-network analyses of differentially methylated genes in liver identified main metabolic pathways indicating a metabolic reprogramming (‘metabolic shift’). Epigenetic mechanisms, allowing an immediate and inherited adaptation may thus be important for the survival of species in the context of a persistently changing environment, such as climate change. KW - DNA methylation KW - exposure KW - wild mammal species KW - inheritance KW - plasticity KW - adaptation Y1 - 2018 U6 - https://doi.org/10.1093/eep/dvy011 SN - 2058-5888 VL - 4 IS - 2 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Radchuk, Viktoriia A1 - Kramer-Schadt, Stephanie A1 - Fickel, Jörns A1 - Wilting, Andreas T1 - Distributions of mammals in Southeast Asia: The role of the legacy of climate and species body mass JF - Journal of biogeography N2 - Aim Current species distributions are shaped by present and past biotic and abiotic factors. Here, we assessed whether abiotic factors (habitat availability) in combination with past connectivity and a biotic factor (body mass) can explain the unique distribution pattern of Southeast Asian mammals, which are separated by the enigmatic biogeographic transition zone, the Isthmus of Kra (IoK), for which no strong geophysical barrier exists. Location Southeast Asia. Taxon Mammals. Methods We projected habitat suitability for 125 mammal species using climate data for the present period and for two historic periods: mid-Holocene (6 ka) and last glacial maximum (LGM 21 ka). Next, we employed a phylogenetic linear model to assess how present species distributions were affected by the suitability of areas in these different periods, habitat connectivity during LGM and species body mass. Results Our results show that cooler climate during LGM provided suitable habitat south of IoK for species presently distributed north of IoK (in mainland Indochina). However, the potentially suitable habitat for these Indochinese species did not stretch very far southwards onto the exposed Sunda Shelf. Instead, we found that the emerged landmasses connecting Borneo and Sumatra provided suitable habitat for forest dependent Sundaic species. We show that for species whose current distribution ranges are mainly located in Indochina, the area of the distribution range that is located south of IoK is explained by the suitability of habitat in the past and present in combination with the species body mass. Main conclusions We demonstrate that a strong geophysical barrier may not be necessary for maintaining a biogeographic transition zone for mammals, but that instead a combination of abiotic and biotic factors may suffice. KW - habitat suitability KW - Isthmus of Kra KW - least-cost path KW - PanTHERIA KW - phylogenetic regression KW - species distribution model Y1 - 2019 U6 - https://doi.org/10.1111/jbi.13675 SN - 0305-0270 SN - 1365-2699 VL - 46 IS - 10 SP - 2350 EP - 2362 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Stillfried, Milena A1 - Fickel, Jörns A1 - Börner, Konstantin A1 - Wittstatt, Ulrich A1 - Heddergott, Mike A1 - Ortmann, Sylvia A1 - Kramer-Schadt, Stephanie A1 - Frantz, Alain C. T1 - Do cities represent sources, sinks or isolated islands for urban wild boar population structure? JF - Journal of applied ecology : an official journal of the British Ecological Society KW - baps KW - Berlin KW - diyabc KW - human-wildlife conflict KW - hunting KW - microsatellites KW - movement barrier KW - source-sink dynamics KW - structure KW - urban ecology Y1 - 2017 U6 - https://doi.org/10.1111/1365-2664.12756 SN - 0021-8901 SN - 1365-2664 VL - 54 IS - 1 SP - 272 EP - 281 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Weyrich, Alexandra A1 - Lenz, Dorina A1 - Fickel, Jörns T1 - Environmental Change-Dependent Inherited Epigenetic Response JF - GENES N2 - Epigenetic modifications are a mechanism conveying environmental information to subsequent generations via parental germ lines. Research on epigenetic responses to environmental changes in wild mammals has been widely neglected, as well as studies that compare responses to changes in different environmental factors. Here, we focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to either diet (~40% less protein) or temperature increase (10 °C increased temperature). Because both experiments focused on the liver as the main metabolic and thermoregulation organ, we were able to decipher if epigenetic changes differed in response to different environmental changes. Reduced representation bisulfite sequencing (RRBS) revealed differentially methylated regions (DMRs) in annotated genomic regions in sons sired before (control) and after the fathers’ treatments. We detected both a highly specific epigenetic response dependent on the environmental factor that had changed that was reflected in genes involved in specific metabolic pathways, and a more general response to changes in outer stimuli reflected by epigenetic modifications in a small subset of genes shared between both responses. Our results indicated that fathers prepared their offspring for specific environmental changes by paternally inherited epigenetic modifications, suggesting a strong paternal contribution to adaptive processes. KW - DNA methylation KW - exposure KW - wild mammal species KW - inheritance KW - plasticity KW - adaptation KW - RRBS Y1 - 2018 U6 - https://doi.org/10.3390/genes10010004 SN - 2073-4425 VL - 10 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Guerrero, Tania P. A1 - Fickel, Jörns A1 - Benhaiem, Sarah A1 - Weyrich, Alexandra T1 - Epigenomics and gene regulation in mammalian social systems JF - Current zoology N2 - Social epigenomics is a new field of research that studies how the social environment shapes the epigenome and how in turn the epigenome modulates behavior. We focus on describing known gene-environment interactions (GEIs) and epigenetic mechanisms in different mammalian social systems. To illustrate how epigenetic mechanisms integrate GEls, we highlight examples where epigenetic mechanisms are associated with social behaviors and with their maintenance through neuroendocrine, locomotor, and metabolic responses. We discuss future research trajectories and open questions for the emerging field of social epigenomics in nonmodel and naturally occurring social systems. Finally, we outline the technological advances that aid the study of epigenetic mechanisms in the establishment of GEIs and vice versa. KW - epigenetics KW - DNA methylation KW - histone modification KW - rank KW - social status KW - social systems Y1 - 2020 U6 - https://doi.org/10.1093/cz/zoaa005 SN - 1674-5507 SN - 2396-9814 VL - 66 IS - 3 SP - 307 EP - 319 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bayerl, Helmut A1 - Kraus, Robert H. S. A1 - Nowak, Carsten A1 - Foerster, Daniel W. A1 - Fickel, Jörns A1 - Kühn, Ralph T1 - Fast and cost-effective single nucleotide polymorphism (SNP) detection in the absence of a reference genome using semideep next-generation Random Amplicon Sequencing (RAMseq) JF - Molecular ecology resources N2 - Biodiversity has suffered a dramatic global decline during the past decades, and monitoring tools are urgently needed providing data for the development and evaluation of conservation efforts both on a species and on a genetic level. However, in wild species, the assessment of genetic diversity is often hampered by the lack of suitable genetic markers. In this article, we present Random Amplicon Sequencing (RAMseq), a novel approach for fast and cost-effective detection of single nucleotide polymorphisms (SNPs) in nonmodel species by semideep sequencing of random amplicons. By applying RAMseq to the Eurasian otter (Lutra lutra), we identified 238 putative SNPs after quality filtering of all candidate loci and were able to validate 32 of 77 loci tested. In a second step, we evaluated the genotyping performance of these SNP loci in noninvasive samples, one of the most challenging genotyping applications, by comparing it with genotyping results of the same faecal samples at microsatellite markers. We compared (i) polymerase chain reaction (PCR) success rate, (ii) genotyping errors and (iii) Mendelian inheritance (population parameters). SNPs produced a significantly higher PCR success rate (75.5% vs. 65.1%) and lower mean allelic error rate (8.8% vs. 13.3%) than microsatellites, but showed a higher allelic dropout rate (29.7% vs. 19.8%). Genotyping results showed no deviations from Mendelian inheritance in any of the SNP loci. Hence, RAMseq appears to be a valuable tool for the detection of genetic markers in nonmodel species, which is a common challenge in conservation genetic studies. KW - high-throughput sequencing KW - Lutra lutra KW - nonmodel species KW - RAMseq KW - RAPD KW - variant detection Y1 - 2018 U6 - https://doi.org/10.1111/1755-0998.12717 SN - 1755-098X SN - 1755-0998 VL - 18 IS - 1 SP - 107 EP - 117 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hagemann, Justus A1 - Conejero, Carles A1 - Stillfried, Milena A1 - Mentaberre, Gregorio A1 - Castillo-Contreras, Raquel A1 - Fickel, Jörns A1 - Lopez-Olvera, Jorge Ramón T1 - Genetic population structure defines wild boar as an urban exploiter species in Barcelona, Spain JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Urban wildlife ecology is gaining relevance as metropolitan areas grow throughout the world, reducing natural habitats and creating new ecological niches. However, knowledge is still scarce about the colonisation processes of such urban niches, the establishment of new communities, populations and/or species, and the related changes in behaviour and life histories of urban wildlife. Wild boar (Sus scrofa) has successfully colonised urban niches throughout Europe. The aim of this study is to unveil the processes driving the establishment and maintenance of an urban wild boar population by analysing its genetic structure. A set of 19 microsatellite loci was used to test whether urban wild boars in Barcelona, Spain, are an isolated population or if gene flow prevents genetic differentiation between rural and urban wild boars. This knowledge will contribute to the understanding of the effects of synurbisation and the associated management measures on the genetic change of large mammals in urban ecosystems. Despite the unidirectional gene flow from rural to urban areas, the urban wild boars in Barcelona form an island population genotypically differentiated from the surrounding rural ones. The comparison with previous genetic studies of urban wild boar populations suggests that forest patches act as suitable islands for wild boar genetic differentiation. Previous results and the genetic structure of the urban wild boar population in Barcelona classify wild boar as an urban exploiter species. These wild boar peri-urban island populations are responsible for conflict with humans and thus should be managed by reducing the attractiveness of urban areas. The management of peri-urban wild boar populations should aim at reducing migration into urban areas and preventing phenotypic changes (either genetic or plastic) causing habituation of wild boars to humans and urban environments. KW - gene flow KW - island population KW - population genetics KW - sus scrofa KW - synurbisation KW - urban ecology Y1 - 2022 U6 - https://doi.org/10.1016/j.scitotenv.2022.155126 SN - 0048-9697 SN - 1879-1026 VL - 833 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Patel, Riddhi P. A1 - Wutke, Saskia A1 - Lenz, Dorina A1 - Mukherjee, Shomita A1 - Ramakrishnan, Uma A1 - Veron, Geraldine A1 - Fickel, Jörns A1 - Wilting, Andreas A1 - Förster, Daniel W. T1 - Genetic Structure and Phylogeography of the Leopard Cat (Prionailurus bengalensis) Inferred from Mitochondrial Genomes JF - Journal of Heredity N2 - The Leopard cat Prionailurus bengalensis is a habitat generalist that is widely distributed across Southeast Asia. Based on morphological traits, this species has been subdivided into 12 subspecies. Thus far, there have been few molecular studies investigating intraspecific variation, and those had been limited in geographic scope. For this reason, we aimed to study the genetic structure and evolutionary history of this species across its very large distribution range in Asia. We employed both PCR-based (short mtDNA fragments, 94 samples) and high throughput sequencing based methods (whole mitochondrial genomes, 52 samples) on archival, noninvasively collected and fresh samples to investigate the distribution of intraspecific genetic variation. Our comprehensive sampling coupled with the improved resolution of a mitochondrial genome analyses provided strong support for a deep split between Mainland and Sundaic Leopard cats. Although we identified multiple haplogroups within the species’ distribution, we found no matrilineal evidence for the distinction of 12 subspecies. In the context of Leopard cat biogeography, we cautiously recommend a revision of the Prionailurus bengalensis subspecific taxonomy: namely, a reduction to 4 subspecies (2 mainland and 2 Sundaic forms). KW - habitat generalist KW - hybrid capture KW - Leopard cat KW - mitogenome KW - mtDNA KW - Southeast Asia Y1 - 2017 U6 - https://doi.org/10.1093/jhered/esx017 SN - 0022-1503 SN - 1465-7333 VL - 108 IS - 4 SP - 349 EP - 360 PB - Oxford Univ. Press CY - Cary ER -