TY - GEN A1 - Püschel, Gerhard Paul A1 - Jungermann, Kurt T1 - Activation of inositol phosphate formation by circulating noradrenaline but not by sympathetic nerve stimulation with a similar increase of glucose release in perfused rat liver N2 - In the isolated rat liver perfused in situ, stimulation of the nerve bundles around the hepatic artery and portal vein caused an increase of glucose and lactate output and a reduction of perfusion flow. These changes could be inhibited completely by α-receptor blockers. The possible involvement of inositol phosphates in the intracellular signal transmission was studied. 1. In cell-suspension experiments, which were performed as a positive control, noradrenaline caused an increase in glucose output and, in the presence of 10 mM LiCl, a dose-dependent and time-dependent increase of inositol mono, bis and trisphosphate. 2. In the perfused rat liver 1 μM noradrenaline caused an increase of glucose and lactate output and in the presence of 10 mM LiCl a time-dependent increase of inositol mono, bis and trisphosphate that was comparable to that observed in cell suspensions. 3. In the perfused rat liver stimulation of the nerve bundles around the portal vein and hepatic artery caused a similar increase in glucose and lactate output to that produced by noradrenaline, but in the presence of 10 mM LiCl there was a smaller increase of inositol monophosphate and no increase of inositol bis and trisphosphate. These findings are in line with the proposal that circulating noradrenaline reaches every hepatocyte, causing a clear overall increase of inositol phosphate formation and thus calcium release from the endoplasmic reticulum, while the hepatic nerves reach only a few cells causing there a small local change of inositol phosphate metabolism and thence a propagation of the signal via gap junctions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 110 Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45846 ER - TY - GEN A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul A1 - Jungermann, Kurt T1 - Characterization of prostaglandin-F₂α-binding sites on rat hepatocyte plasma membranes N2 - Prostaglandin (PG)F₂α has previously been shown to increase glucose output from perfused livers and isolated hepatocytes, where it stimulated glycogen phosphorylase via an inositol-trisphosphatedependent signal pathway. In this study, PGF₂α binding sites on hepatocyte plasma membranes, that might represent the putative receptor, were characterized. Binding studies could not be performed with intact hepatocytes, because PGF₂α accumulated within the cells even at 4°C. The intracellular accumulation was an order of magnitude higher than binding to plasma membranes. Purified hepatocyte plasma membranes had a high-affinity/low-capacity and a low-affinity/highcapacity binding'site for PGF₂α. The respective binding constants for the high-affinity site were Kd = 3 nM and Bmax = 6 fmol/mg membrane protein, and for the low-affinity site Kd = 426 nM and Bmax = 245 fmol/mg membrane protein. Specific PGF₂α binding to the low-affinity site, but not to the high-affinity site, could be enhanced most potently by GTP[γS] followed by GDP[ϐS] and GTP, but not by ATP[γS] or GMP. PGF₂α competed most potently with [³H]PGF₂α for specific binding to hepatocyte plasma membranes, followed by PGD₂ and PGE₂. Since the low-affinity PGF₂α-binding site had a Kd in the concentration range in which PG had previously been shown to be half-maximally active, and since this binding site showed a sensitivity to GTP, it is concluded that it might represent the receptor involved in the PGF₂α signal chain in hepatocytes. A biological function of the high-affinity site is currently not known. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 113 Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45863 ER - TY - GEN A1 - Püschel, Gerhard Paul A1 - Oppermann, Martin A1 - Neuschäfer-Rube, Frank A1 - Götze, Otto A1 - Jungermann, Kurt T1 - Differential effects of human anaphylatoxin C3a on glucose output and flow in rat liver during orthograde and retrograde perfusion : the periportal scavenger cell hypothesis N2 - 1) During orthograde perfusion of rat liver human anaphylatoxin C3a caused an increase in glucose and lactate output and reduction of flow. These effects could be enhanced nearly twofold by co-infusion of the carboxypeptidase inhibitor MERGETPA, which reduced inactivation of C3a to C3adesArg. 2) During retrograde perfusion C3a caused a two- to threefold larger increase in glucose and lactate output and reduction of flow than in orthograde perfusions. These actions tended to be slightly enhanced by MERGETPA. 3) The elimination of C3a plus C3adesArg immunoreactivity during a single liver passage was around 67%, irrespective of the perfusion direction and the presence of the carboxypeptidase inhibitor MERGETPA; however, less C3adesArg and more intact C3a appeared in the perfusate in the presence of MERGETPA in orthograde and retrogade perfusions It is concluded that rat liver inactivated human anaphylatoxin C3a by conversion to C3adesArg and moreover eliminated it by an additional process. The inactivation to C3adesArg seemed to be located predominantly in the proximal periportal region of the liver sinusoid, since C3a was less effective in orthograde perfusions, when C3a first passed the proximal periportal region before reaching the predominant mass of parenchyma as its site of action, than in retrograde perfusions, when it first passed the perivenous area. These data may be evidence for a periportal scavenger mechanism, by which the liver protects itself from systemically released mediators of inflammation that interfere with the local regulation of liver metabolism and hemodynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 040 Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16747 ER - TY - GEN A1 - Muschol, Waldemar A1 - Püschel, Gerhard Paul A1 - Hülsmann, Martina A1 - Jungermann, Kurt T1 - Eicosanoid-mediated increase in glucose and lactate output as well as decrease and redistribution of flow by complement-activated rat serum in perfused rat liver N2 - Rat serum, in which the complement sytem had been activated by incubation with zymosan, increased the glucose and lactate output, and reduced and redistributed the flow in isolated perfused rat liver clearly more than the control serum. Heat inactivation of the rat serum prior to zymosan incubation abolished this difference. Metabolic and hemodynamic alterations caused by the activated serum were dose dependent. They were almost completely inhibited by the cyclooxygenase inhibitor indomethacin and by the thromboxane antagonist 4-[2-(4-chlorobenzenesulfonamide)-ethyl]-benzene-acetica cid (BM 13505), but clearly less efficiently by the 5’-lipoxygenase inhibitor nordihydroguaiaretic acid and the leukotriene antagonist N-{3-[3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-propoxy]-4-chlorine-6-methyl-phenyl}-1H-tetrazole-5-carboxamide sodium salt (CGP 35949 B). Control serum and to a much larger extent complement-activated serum, caused an overflow of thromboxane B₂ and prostaglandin F₂α into the hepatic vein. It is concluded that the activated complement system of rat serum can influence liver metabolism and hemodynamics via release from nonparenchymal liver cells of thromboxane and prostaglandins, the latter of which can in turn act on the parenchymal cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - pape 116 Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45892 ER - TY - JOUR A1 - Henkel, Janin A1 - Klauder, Julia A1 - Statz, Meike A1 - Wohlenberg, Anne-Sophie A1 - Kuipers, Sonja A1 - Vahrenbrink, Madita A1 - Püschel, Gerhard Paul T1 - Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E-2 JF - Biomedicines N2 - Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E-2 (PGE(2)) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE(2) to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE(2) synthesis. PGE(2) in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE(2) in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle. KW - macrophages KW - insulin KW - prostaglandin E-2 KW - interleukin-8 KW - inflammation Y1 - 2021 U6 - https://doi.org/10.3390/biomedicines9050449 SN - 2227-9059 VL - 9 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Hespeling, Ursula A1 - Jungermann, Kurt A1 - Püschel, Gerhard Paul T1 - Feedback-inhibition of glucagon-stimulated glycogenolysis in hepatocyte/kupffer cell cocultures by glucagon-elicited prostaglandin production in kupffer cells N2 - Prostaglandins, released from Kupffer cells, have been shown to mediate the increase in hepatic glycogenolysis by various stimuli such as zymosan, endotoxin, immune complexes, and anaphylotoxin C3a involving prostaglandin (PG) receptors coupled to phospholipase C via a G(0) protein. PGs also decreased glucagon-stimulated glycogenolysis in hepatocytes by a different signal chain involving PGE(2) receptors coupled to adenylate cyclase via a G(i) protein (EP(3) receptors). The source of the prostaglandins for this latter glucagon-antagonistic action is so far unknown. This study provides evidence that Kupffer cells may be one source: in Kupffer cells, maintained in primary culture for 72 hours, glucagon (0.1 to 10 nmol/ L) increased PGE(2), PGF(2 alpha), and PGD(2) synthesis rapidly and transiently. Maximal prostaglandin concentrations were reached after 5 minutes. Glucagon (1 nmol/L) elevated the cyclic adenosine monophosphate (cAMP) and inositol triphosphate (InsP(3)) levels in Kupffer cells about fivefold and twofold, respectively. The increase in glyco gen phosphorylase activity elicited by 1 nmol/L glucagon was about twice as large in monocultures of hepatocytes than in cocultures of hepatocytes and Kupffer cells with the same hepatocyte density. Treatment of cocultures with 500 mu mol/L acetylsalicylic acid (ASA) to irreversibly inhibit cyclooxygenase (PGH-synthase) 30 minutes before addition of glucagon abolished this difference. These data support the hypothesis that PGs produced by Kupffer cells in response to glucagon might participate in a feedback loop inhibiting glucagon-stimulated glycogenolysis in hepatocytes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 036 KW - perfused-rat-liver KW - aggregated immunoglobulin-g KW - intercellular communication KW - adenylate-cyclase KW - arachidonic-acid KW - activation KW - glucose Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16697 ER - TY - GEN A1 - Püschel, Gerhard Paul A1 - Kirchner, C. A1 - Schröder, A. A1 - Jungermann, Kurt T1 - Glycogenolytic and antiglycogenolytic prostaglandin E₂ actions in rat hepatocytes are mediated via different signalling pathways N2 - Prostaglandin E₂ has been reported both to stimulate glycogen-phosphorylase activity (glycogenolytic effect) and to inhibit the glucagon-stimulated glycogen-phosphorylase activity (antiglycogenolytic effect) in rat hepatocytes. It was the purpose of this study to resolve this apparent contradiction and to characterize the signalling pathways and receptor subtypes involved in the opposing prostaglandin E₂ actions. Prostaglandin E₂ (10 μM) increased glucose output, glycogen-phosphorylase activity and inositol trisphosphate formation in hepatocyte cell culture andor suspension. In the same systems, prostaglandin E₂ decreased the glucagon-stimulated (1 nM) glycogen-phosphorylase activity and cAMP formation. The signalling pathway leading to the glycogenolytic effect of PGE₂ was interrupted by incubation of the hepatocytes with 4P-phorbol 12-myristate 13-acetate (100 nM) for 10 min, while the antiglycogenolytic effect of prostaglandin E₂ was not attenuated. The signalling pathway leading to the antiglycogenolytic effect of prostaglandin E₂ was interrupted by an incubation of cultured hepatocytes with pertussis toxin (100 ng/ml) for 18 h, whereas the glycogenolytic effect of prostaglandin E₂ was enhanced. The EP₁/EP₃ prostaglandin-E₂-receptor-specific prostaglandin E₂ analogue Sulproston had a stronger glycogenolytic potency than the EP₃ prostaglandin-E₂-receptor-specific prostaglandin E₂ analogue Misoprostol. The antiglycogenolytic potency of both agonists was equal. It is concluded that the glycogenolytic and the antiglycogenolytic effects of prostaglandin E₂ are mediated via different signalling pathways in hepatocytes possibly involving EP₁ and EP₃ prostaglandin E₂ receptors, respectively. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 112 Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45853 ER - TY - GEN A1 - Püschel, Gerhard Paul A1 - Hespeling, Ursula A1 - Oppermann, Martin A1 - Dieter, Peter T1 - Increase in prostanoid formation in rat liver macrophages (Kupffer cells) by human anaphylatoxin C3a N2 - Human anaphylatoxin C3a increases glycogenolysis in perfused rat liver. This action is inhibited by prostanoid synthesis inhibitors and prostanoid antagonists. Because prostanoids but not anaphylatoxin C3a can increase glycogenolysis in hepatocytes, it has been proposed that prostanoid formation in nonparenchymal cells represents an important step in the C3a-dependent increase in hepatic glycogenolysis. This study shows that (a) human anaphylatoxin C3a (0.1 to 10 mug/ml) dose-dependently increased prostaglandin D2, thromboxane B, and prostaglandin F2alpha formation in rat liver macrophages (Kupffer cells); (b) the C3a-mediated increase in prostanoid formation was maximal after 2 min and showed tachyphylaxis; and (c) the C3a-elicited prostanoid formation could be inhibited specifically by preincubation of C3a with carboxypeptidase B to remove the essential C-terminal arginine or by preincubation of C3a with Fab fragments of a neutralizing monoclonal antibody. These data support the hypothesis that the C3a-dependent activation of hepatic glycogenolysis is mediated by way of a C3a-induced prostanoid production in Kupffer cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 037 KW - lactate output KW - glucose KW - complement KW - flow KW - prostaglandin-f2-alpha Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16716 ER - TY - GEN A1 - Püschel, Gerhard Paul A1 - Oppermann, Martin A1 - Muschol, Waldemar A1 - Götze, Otto A1 - Jungermann, Kurt T1 - Increase of glucose and lactate output and decrease of flow by human anaphylatoxin C3a but not C5a in perfused rat liver N2 - The complement fragments C3a and C5a were purified from zymosan-activated human serum by column chromatographic procedures after the bulk of the proteins had been removed by acidic polyethylene glycol precipitation. In the isolated in situ perfused rat liver C3a increased glucose and lactate output and reduced flow. Its effects were enhanced in the presence of the carboxypeptidase inhibitor DL-mercaptomethyl-3-guanidinoethylthio-propanoic acid (MERGETPA) and abolished by preincubation of the anaphylatoxin with carboxypeptidase B or with Fab fragments of an anti-C3a monoclonal antibody. The C3a effects were partially inhibited by the thromboxane antagonist BM13505. C5a had no effect. It is concluded that locally but not systemically produced C3a may play an important role in the regulation of local metabolism and hemodynamics during inflammatory processes in the liver. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 039 KW - Hepatic glucose balance KW - Hepatic lactate balance KW - Hepatic hemodynamics KW - Complement system KW - Anaphylatoxin Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16733 ER - TY - GEN A1 - Püschel, Gerhard Paul A1 - Nath, Annegret A1 - Jungermann, Kurt T1 - Increase of urate formation by stimulation of sympathetic hepatic nerves, circulating noradrenaline and glucagon inthe perfused rat liver N2 - In the isolated rat liver perfused in situ stimulation of the nerve bundles around the portal vein and the hepatic artery caused an increase of urate formation that was inhibited by the α1-blocker prazosine and the xanthine oxidase inhibitor allopurinol. Moreover, nerve stimulation increased glucose and lactate output and decreased perfusion flow. Infusion of noradrenaline had similar effects. Compared to nerve stimulation infusion of glucagon led to a less pronounced increase of urate formation and a twice as large increase in glucose output but a decrease in lactate release without affecting the flow rate. Insulin had no effect on any of the parameters studied. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 038 KW - Urate KW - Allantoin KW - Hepatic nerve KW - Catecholamine KW - Glucagon Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16728 ER -