TY - THES A1 - Pham, Phuong Anh T1 - The metabolic significance of the NAD+ salvage pathway and the alternative pathway of respiration in Arabidopsis thaliana Y1 - 2018 ER - TY - THES A1 - de Souza, Leonardo Perez T1 - Functional characterization of biosynthesis and regulation of plant secondary metabolism Y1 - 2017 ER - TY - JOUR A1 - Bastian, Philipp U. A1 - Robel, Nathalie A1 - Schmidt, Peter A1 - Schrumpf, Tim A1 - Günter, Christina A1 - Roddatis, Vladimir A1 - Kumke, Michael Uwe T1 - Resonance energy transfer to track the motion of lanthanide ions BT - what drives the intermixing in core-shell upconverting nanoparticles? JF - Biosensors : open access journal N2 - The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process. KW - upconversion nanoparticles KW - lanthanoid migration KW - lanthanides KW - core-shell KW - energy transfer Y1 - 2021 U6 - https://doi.org/10.3390/bios11120515 SN - 2079-6374 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Smith, Sarah R. A1 - Dupont, Chris L. A1 - McCarthy, James K. A1 - Broddrick, Jared T. A1 - Obornik, Miroslav A1 - Horak, Ales A1 - Füssy, Zoltán A1 - Cihlar, Jaromir A1 - Kleessen, Sabrina A1 - Zheng, Hong A1 - McCrow, John P. A1 - Hixson, Kim K. A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Fernie, Alisdair A1 - Nikoloski, Zoran A1 - Palsson, Bernhard O. A1 - Allen, Andrew E. T1 - Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom JF - Nature Communications N2 - Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa. KW - Biochemistry KW - Computational biology and bioinformatics KW - Evolution KW - Microbiology KW - Molecular biology Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-12407-y SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kamranfar, Iman A1 - Xue, Gang-Ping A1 - Tohge, Takayuki A1 - Sedaghatmehr, Mastoureh A1 - Fernie, Alisdair A1 - Balazadeh, Salma A1 - Mueller-Roeber, Bernd T1 - Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence JF - New phytologist : international journal of plant science N2 - Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy. KW - Arabidopsis KW - fatty acid KW - primary metabolism KW - protein and amino acid degradation KW - respiration KW - senescence Y1 - 2018 U6 - https://doi.org/10.1111/nph.15127 SN - 0028-646X SN - 1469-8137 VL - 218 IS - 4 SP - 1543 EP - 1557 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ferrari, Camilla A1 - Proost, Sebastian A1 - Janowski, Marcin Andrzej A1 - Becker, Jörg A1 - Nikoloski, Zoran A1 - Bhattacharya, Debashish A1 - Price, Dana A1 - Tohge, Takayuki A1 - Bar-Even, Arren A1 - Fernie, Alisdair A1 - Stitt, Mark A1 - Mutwil, Marek T1 - Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida JF - Nature Communications N2 - Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-08703-2 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zhang, Youjun A1 - Chen, Moxian A1 - Siemiatkowska, Beata A1 - Toleco, Mitchell Rey A1 - Jing, Yue A1 - Strotmann, Vivien A1 - Zhang, Jianghua A1 - Stahl, Yvonne A1 - Fernie, Alisdair T1 - A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species JF - Plant Communications N2 - Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis. KW - transient expression KW - agro-infiltration KW - subcellular localization KW - protein-protein interaction Y1 - 2019 SN - 2590-3462 VL - 1 IS - 5 PB - Science Direct CY - New York ER - TY - JOUR A1 - Pandey, Prashant K. A1 - Yu, Jing A1 - Omranian, Nooshin A1 - Alseekh, Saleh A1 - Vaid, Neha A1 - Fernie, Alisdair A1 - Nikoloski, Zoran A1 - Laitinen, Roosa A. E. T1 - Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations JF - Plant Direct N2 - Nitrogen (N) is central for plant growth, and metabolic plasticity can provide a strategy to respond to changing N availability. We showed that two local A. thaliana populations exhibited differential plasticity in the compounds of photorespiratory and starch degradation pathways in response to three N conditions. Association of metabolite levels with growth-related and fitness traits indicated that controlled plasticity in these pathways could contribute to local adaptation and play a role in plant evolution. KW - Arabidopsis thaliana KW - natural variation KW - nitrogen availability KW - photorespiration KW - plasticity Y1 - 2019 U6 - https://doi.org/10.1002/pld3.186 SN - 2475-4455 VL - 3 IS - 11 PB - John Wiley & sonst LTD CY - Chichester ER - TY - THES A1 - Naake, Thomas T1 - Strategies to investigate the natural variation of plant specialized metabolism Y1 - 2020 ER - TY - THES A1 - Mahto, Harendra T1 - In vitro analysis of Early Starvation 1 (ESV1) and Like Early Starvation 1 (LESV) on starch degradation with focus on glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) N2 - Starch is an insoluble polyglucan, comprises of two polymers, namely, the branched α-1,4: α-1,6-D-glucan amylopectin and the almost unbranched α-1,4-D-glucan amylose. The growth of all plants is directly dependent on the accumulation of transitory starch during the daytime when photosynthesis takes place and subsequently starch degradation during the night. Starch phosphorylation takes place by starch-related dikinases called α-glucan, water dikinase (GWD), and phosphoglucan, water dikinase (PWD), and is a very important step in starch degradation. The biochemical mechanisms of phosphorylation of starch are not properly understood. Recent studies have found that there are two starch binding proteins namely, Early Starvation1 (ESV1) and Like Early Starvation1 (LESV), which play an important role in starch metabolism. It has been shown that ESV1 and LESV proteins affect the starch phosphorylation activity of GWD and PWD enzymes, which control the rate of degradation of starch granules. In this thesis, various in vitro assays were performed to identify and understand the mechanism of recombinant proteins; ESV1 and LESV on the starch degradation. The starch degradation was performed by phosphorylation enzymes, GWD and PWD separately. In various enzymatic assays, the influence of the ESV1 and LESV on the actions of GWD and PWD on the surfaces of different native starch granules were analysed. Furthermore, ESV1 and LESV have specifically shown influences on the phosphorylation activities of GWD and PWD on the starch granule surfaces in an antagonistic pattern in such a way that, the GWD mediated phosphorylation were significantly reduced while PWD mediated phosphorylation were significantly increased respectively. In another set of experiments, ISA and BAM hydrolyzing enzymes were used to alter the structure of starch, and then determine the effect of both dikinases mediated phosphorylation in the presence of ESV1 and LESV on the altered starch granules surfaces. In these results, significant decreases in both GWD and PWD mediated phosphorylation were observed in all the treatments containing either ESV1 or LESV proteins only or both ESV1 and LESV. It was also found that LESV preferentially binds to both amylose and amylopectin, while ESV1 binds to highly ordered glucans such as maltodextrins and amylopectin, which are crystalline in structure. Both ESV1 or LESV proteins either individually or in combination have shown influence on the activity of GWD and PWD phosphate incorporation into the starch granules via reduction even though at different percentages depending on the sources of starch, therefore it is difficult to distinguish the specific function between them. The biochemical studies have shown that protein-glucan interaction specifically between ESV1 or LESV or in combination with different species of starch granules has very strong surface binding, or it might be possible that both the proteins not only bind to the surface of the starch granules but also have entered deep inside the glucan structure of the starch granules. However, the results also revealed that ESV1 and LESV did not alter the autophosphorylation of the dikinases. Also, the chain length distribution pattern of the released glucan chains after treatment of starch with ISA enzyme was evaluated with respect to the degree of polymerization (DP) of the different starch granules. Capillary electrophoresis was employed to study the effect of LESV and ESV1 on the chain length distribution. In summary, this study confirms that ESV1 and LESV play an important role in organizing and regulating the starch metabolism process. In the later half, studies were performed to monitor whether the metabolism of carbohydrates and partitioning, contribute to the higher salt tolerance of the facultative halophyte Hordeum marinum when compared to glycophyte Hordeum vulgare. Seedlings with the same size from both species were hydroponically grown at 0, 150, and 300 mM of NaCl for 3 weeks. H. marinum maintained a high relative growth rate, which was found concomitant in higher aptitude plants to maintain efficient shoot tissue hydration and integrity of membrane under salt conditions when compared to H. vulgare. Hence, our data suggested that the change in the starch storage, distribution of soluble sugar concentrations between source and sink organs, and also changes in the level of enzymes involved in the starch metabolism was significant to give insights into the importance of carbohydrate metabolism in barley species with regards to the salt tolerance. Although these results are still in their nascent state, it could be vital for other researchers to formulate future studies. The preliminary results which were studies about the carbohydrate metabolism and partitioning in salt responses in the halophyte H. marinum and the glycophyte H. vulgare revealed that salt tolerance in barley species is not due to osmotic adjustments, but due to other reasons that were not explored in the past studies. However, the activity of DPE2 in H. vulgare was not hampered by the presence of NaCl as observed. While Pho1 and Pho2, activities were highly increased in cultivated barley. These findings could be suggestive of a possible role of these enzymes in the responses of carbohydrate metabolism to salinity. When sea and cultivated barley species were compared, it was discovered that the former had more versatility in carbohydrate metabolism and distribution. N2 - Stärke ist ein unlösliches Polyglucan, das aus zwei Polymeren besteht, nämlich dem verzweigten α-1,4: α-1,6-D-Glucan Amylopektin und dem fast unverzweigten α-1,4-D-Glucan Amylose. Das Wachstum aller Pflanzen hängt direkt von der Akkumulation transitorischer Stärke während des Tages, wenn die Photosynthese stattfindet, und dem anschließenden Stärkeabbau während der Nacht ab. Die Phosphorylierung von Stärke erfolgt durch stärkeverwandte Dikinasen, die α-Glucan-Wasser-Dikinase (GWD) und Phosphoglucan-Wasser-Dikinase (PWD), und ist ein entscheidender Schritt beim Stärkeabbau. Die biochemischen Mechanismen der Phosphorylierung von Stärke sind nicht genau bekannt. Jüngste Studien haben ergeben, dass es zwei stärkebindende Proteine gibt, nämlich Early Starvation1 (ESV1) und Like Early Starvation1 (LESV), die eine wichtige Rolle im Stärkestoffwechsel spielen. Es hat sich gezeigt, dass ESV1- und LESV-Proteine die Stärkephosphorylierungsaktivität der GWD- und PWD-Enzyme beeinflussen, die die Geschwindigkeit des Abbaus von Stärkekörnern steuern. In dieser Arbeit wurden verschiedene In-vitro-Tests durchgeführt, um den Mechanismus der rekombinanten Proteine ESV1 und LESV auf den Stärkeabbau zu identifizieren und zu verstehen.Der Stärkeabbau wurde von den Phosphorylierungsenzymen GWD und PWD getrennt durchgeführt. In verschiedenen enzymatischen Assays wurde der Einfluss von ESV1 und LESV auf die Wirkung von GWD und PWD auf die Oberflächen verschiedener nativer Stärkekörner analysiert. Darüber hinaus haben ESV1 und LESV spezifisch Einflüsse auf die Phosphorylierungsaktivitäten von GWD und PWD auf den Oberflächen der Stärkekörner in einem antagonistischen Muster gezeigt, so dass die GWD-vermittelte Phosphorylierung signifikant reduziert wurde, während die PWD-vermittelte Phosphorylierung signifikant erhöht wurde. In einer anderen Versuchsreihe wurden ISA- und BAM verwendet, um die Struktur der Stärke zu verändern und dann die Auswirkungen der durch beide Dikinasen vermittelten Phosphorylierung in Gegenwart von ESV1 und LESV auf die veränderten Oberflächen der Stärkekörner zu bestimmen. In diesen Ergebnissen wurde ein signifikanter Rückgang der GWD- und PWD-vermittelten Phosphorylierung in allen Behandlungen beobachtet, die entweder nur ESV1- oder LESV-Proteine oder sowohl ESV1 als auch LESV enthielten. Es wurde auch festgestellt, dass LESV vorzugsweise an Amylose und Amylopektin bindet, während ESV1 an hochgeordnete Glucane wie Maltodextrine und Amylopektin bindet, die eine kristalline Struktur aufweisen. Sowohl ESV1- als auch LESV-Proteine haben entweder einzeln oder in Kombination einen Einfluss auf die Aktivität des GWD- und PWD-Phosphateinbaus in die Stärkekörner durch Reduktion gezeigt, jedoch zu unterschiedlichen Prozentsätzen, je nach Stärkequelle, so dass es schwierig ist, ihre spezifische Funktion zu unterscheiden. Die biochemischen Untersuchungen zeigen, dass die Protein-Glucan-Interaktion speziell zwischen ESV1 oder LESV oder in Kombination mit verschiedenen Arten von Stärkekörnern eine sehr starke Oberflächenbindung aufweist, oder es ist möglich, dass beide Proteine nicht nur an die Oberfläche der Stärkekörner binden, sondern auch tief in die Glucanstruktur der Stärkekörner eingedrungen sind. Die Ergebnisse zeigten jedoch auch, dass ESV1 und LESV die Autophosphorylierung der Dikinasen nicht veränderten. Außerdem wurde die Kettenlängenverteilung der freigesetzten Glucanketten nach Behandlung der Stärke mit dem ISA-Enzym im Hinblick auf den Polymerisationsgrad (DP) der verschiedenen Stärkekörner bewertet. Mit Hilfe der Kapillarelektrophorese wurde die Wirkung von LESV und ESV1 auf die Kettenlängenverteilung untersucht. Zusammenfassend bestätigt diese Studie, dass ESV1 und LESV eine wichtige Rolle bei der Organisation und Regulierung des Stärkestoffwechsels spielen. In der zweiten Hälfte wurden Untersuchungen durchgeführt, um zu prüfen, ob der Stoffwechsel von Kohlenhydraten und deren Verteilung zu der höheren Salztoleranz des fakultativen Halophyten Hordeum marinum im Vergleich zum Glykophyten Hordeum vulgare beitragen. Die gleich großen Sämlinge beider Arten wurden 3 Wochen lang bei 0, 150 und 300 mM NaCl hydroponisch gezogen. H. marinum wies eine hohe relative Wachstumsrate auf, die mit einer höheren Fähigkeit der Pflanzen einherging, unter Salzbedingungen eine effiziente Hydratation des Sprossgewebes und die Integrität der Membran aufrechtzuerhalten, als dies bei H. vulgare der Fall war. Unsere Daten deuten also darauf hin, dass die Veränderungen in der Stärkespeicherung, die Verteilung der Konzentrationen löslicher Zucker zwischen Source- und Sinkorganen und auch die Veränderungen in der Menge der am Stärkestoffwechsel beteiligten Enzyme von Bedeutung sind und Einblicke in die Bedeutung des Kohlenhydratstoffwechsels bei Gerstenarten im Hinblick auf die Salztoleranz geben. Obwohl sich diese Ergebnisse noch im Anfangsstadium befinden, könnten sie für andere Forscher bei der Formulierung künftiger Studien von entscheidender Bedeutung sein. Die vorläufigen Ergebnisse der Studien über den Kohlenhydratstoffwechsel und die Verteilung der Kohlenhydrate bei Salzreaktionen im Halophyten H. marinum und im Glykophyten H. vulgare haben gezeigt, dass die Salztoleranz bei Gerstenarten nicht auf osmotische Anpassungen zurückzuführen ist, sondern auf andere Gründe, die in den bisherigen Studien nicht untersucht wurden. Die Aktivität von DPE2 in H. vulgare wurde jedoch nicht wie beobachtet durch die Anwesenheit von NaCl beeinträchtigt. Dagegen waren die Aktivitäten von Pho1 und Pho2 in kultivierter Gerste stark erhöht. Diese Ergebnisse könnten auf eine mögliche Rolle dieser Enzyme bei der Reaktion des Kohlenhydratstoffwechsels auf den Salzgehalt hinweisen. Beim Vergleich von Meeres- und Kulturgerstenarten wurde festgestellt, dass erstere eine größere Vielseitigkeit im Kohlenhydratstoffwechsel und in der Kohlenhydratverteilung aufweisen. KW - Arabidopsis thaliana KW - starch phosphorylation KW - phosphoglucan KW - starch granule surface KW - Early Starvation 1 Y1 - 2022 ER - TY - THES A1 - Seerangan, Kumar T1 - Actin-based regulation of cell and tissue scale morphogenesis in developing leaves T1 - Aktin-basierte Regulierung der Zell- und Gewebeskalenmorphogenese in sich entwickelnden Blättern N2 - Leaves exhibit cells with varying degrees of shape complexity along the proximodistal axis. Heterogeneities in growth directions within individual cells bring about such complexity in cell shape. Highly complex and interconnected gene regulatory networks and signaling pathways have been identified to govern these processes. In addition, the organization of cytoskeletal networks and cell wall mechanical properties greatly influences the regulation of cell shape. Research has shown that microtubules are involved in regulating cellulose deposition and direc-tion of cell growth. However, comprehensive analysis of the regulation of the actin cytoskele-ton in cell shape regulation has not been well studied. This thesis provides evidence that actin regulates aspects of cell growth, division, and direction-al expansion that impacts morphogenesis of developing leaves. The jigsaw puzzle piece mor-phology of epidermal pavement cells further serves as an ideal system to investigate the com-plex process of morphogenetic processes occurring at the cellular level. Here we have em-ployed live cell based imaging studies to track the development of pavement cells in actin com-promised conditions. Genetic perturbation of two predominantly expressed vegetative actin genes ACTIN2 and ACTIN7 results in delayed emergence of the cellular protrusions in pave-ment cells. Perturbation of actin also impacted the organization of microtubule in these cells that is known to promote emergence of cellular protrusions. Further, live-cell imaging of actin or-ganization revealed a correlation with cell shape, suggesting that actin plays a role in influencing pavement cell morphogenesis. In addition, disruption of actin leads to an increase in cell size along the leaf midrib, with cells being highly anisotropic due to reduced cell division. The reduction of cell division further im-pacted the morphology of the entire leaf, with the mutant leaves being more curved. These re-sults suggests that actin plays a pivotal role in regulating morphogenesis at the cellular and tis-sue scales thereby providing valuable insights into the role of the actin cytoskeleton in plant morphogenesis. N2 - Die Blätter weisen entlang der proximodistalen Achse Zellen mit unterschiedlich komplexer Form auf. Heterogenitäten in den Wachstumsrichtungen innerhalb einzelner Zellen führen zu einer solchen Komplexität der Zellform. Es wurden hochkomplexe und miteinander verbundene Genregulationsnetze und Signalwege identifiziert, die diese Prozesse steuern. Darüber hinaus haben die Organisation der Zytoskelettnetze und die mechanischen Eigenschaften der Zellwand großen Einfluss auf die Regulierung der Zellform. Die Forschung hat gezeigt, dass Mikrotubuli an der Regulierung der Zelluloseablagerung und der Richtung des Zellwachstums beteiligt sind. Eine umfassende Analyse der Regulierung des Aktin-Zytoskeletts bei der Regulierung der Zellform ist jedoch noch nicht ausreichend untersucht worden. Diese Arbeit liefert Beweise dafür, dass Aktin Aspekte des Zellwachstums, der Zellteilung und der gerichteten Expansion reguliert, die die Morphogenese der sich entwickelnden Blätter beeinflussen. Die puzzleartige Morphologie der epidermalen Zellen ist ein ideales System, um den komplexen Prozess der morphogenetischen Prozesse auf zellulärer Ebene zu untersuchen. Hier haben wir Bildgebungsstudien an lebenden Zellen durchgeführt, um die Entwicklung von Epidermiszellen unter Bedingungen zu verfolgen, bei denen das Aktin beeinträchtigt ist. Eine genetische Störung der beiden vorwiegend vegetativ exprimierten Aktin-Gene ACTIN2 und ACTIN7 führt zu einer verzögerten Entstehung der zellulären Wandausstülpungen in Epidermiszellen. Die Störung des Aktins wirkte sich auch auf die Organisation der Mikrotubuli in diesen Zellen aus, von denen bekannt ist, dass sie das Entstehen von Zellwandausstülpungen fördern. Darüber hinaus ergab die Live-Zell-Darstellung der Aktin-Organisation eine Korrelation mit der Zellform, was darauf hindeutet, dass Aktin eine Rolle bei der Morphogenese der Epidermiszellen spielt. Darüber hinaus führt die Unterbrechung von Aktin zu einer Zunahme der Zellgröße entlang der Blattmittelrippe, wobei die Zellen aufgrund der verringerten Zellteilung stark anisotrop sind. Die Verringerung der Zellteilung wirkte sich auch auf die Morphologie des gesamten Blattes aus, wobei die mutierten Blätter stärker gekrümmt waren. Diese Ergebnisse deuten darauf hin, dass Aktin eine zentrale Rolle bei der Regulierung der Morphogenese auf zellulärer und geweblicher Ebene spielt, was wertvolle Einblicke in die Rolle des Aktin-Zytoskeletts bei der Morphogenese von Pflanzen ermöglicht. KW - leaf KW - pavement cell KW - actin/microtubules KW - spatio-temporal regulation KW - Blatt KW - Pflasterzelle KW - Aktin/Mikrotubuli KW - räumlich-zeitliche Regulierung Y1 - 2023 ER - TY - THES A1 - Apriyanto, Ardha T1 - Analysis of starch metabolism in source and sink tissue of plants T1 - Analyse des Stärkestoffwechsels im Source und Sink Gewebe von Pflanzen N2 - Starch is an essential biopolymer produced by plants. Starch can be made inside source tissue (such as leaves) and sink tissue (such as fruits and tubers). Nevertheless, understanding how starch metabolism is regulated in source and sink tissues is fundamental for improving crop production. Despite recent advances in the understanding of starch and its metabolism, there is still a knowledge gap in the source and sink metabolism. Therefore, this study aimed to summarize the state of the art regarding starch structure and metabolism inside plants. In addition, this study aimed to elucidate the regulation of starch metabolism in the source tissue using the leaves of a model organism, Arabidopsis thaliana, and the sink tissue of oil palm (Elaeis guineensis) fruit as a commercial crop. The research regarding the source tissue will focus on the effect of the blockage of starch degradation on the starch parameter in leaves, especially in those of A. thaliana, which lack both disproportionating enzyme 2 (DPE2) and plastidial glucan phosphorylase 1 (PHS1) (dpe2/phs1). The additional elimination of phosphoglucan water dikinase (PWD), starch excess 4 (SEX4), isoamylase 3 (ISA3), and disproportionating enzyme 1 (DPE1) in the dpe2/phs1 mutant background demonstrates the alteration of starch granule number per chloroplast. This study provides insights into the control mechanism of granule number regulation in the chloroplast. The research regarding the sink tissue will emphasize the relationship between starch metabolism and the lipid metabolism pathway in oil palm fruits. This study was conducted to observe the alteration of starch parameters, metabolite abundance, and gene expression during oil palm fruit development with different oil yields. This study shows that starch and sucrose can be used as biomarkers for oil yield in oil palms. In addition, it is revealed that the enzyme isoforms related to starch metabolism influence the oil production in oil palm fruit. Overall, this thesis presents novel information regarding starch metabolism in the source tissue of A.thaliana and the sink tissue of E.guineensis. The results shown in this thesis can be applied to many applications, such as modifying the starch parameter in other plants for specific needs. N2 - Stärke ist ein unverzichtbares Biopolymer, das von Pflanzen sowohl in den Quellgeweben (sources, z. B. Blätter) als auch in den Senkengeweben (sinks, z. B. Früchten und Knollen) gebildet wird. Daher ist ein profundes Wissen über die Regulation des Stärkestoffwechsel in den source und sink Organen von grundlegender Bedeutung für die Verbesserung der Pflanzenproduktion. Trotz der jüngsten Fortschritte im Verständnis des Stärkestoffwechsels bleiben weiterhin viele Fragen über den detaillierten source und sink Metabolismus offen. Ziel dieser Studie war es daher, den aktuellen Forschungsstand über die Struktur und den Stoffwechsel von Stärke in Pflanzen aufzuzeigen. Darüber hinaus sollte in dieser Studie die Regulierung des Stärkestoffwechsels in den Blättern (source) des Modellorganismus Arabidopsis thaliana und in den Ölpalmfrüchten (sink) von Elaeis guineensis, einer Nutzpflanze, aufgeklärt werden. Die Analyse des source Gewebes konzentrierte sich dabei auf die Auswirkungen auf Stärkeparamter wie beispielsweise die Granulazahl durch die Blockierung des Stärkeabbaus in Blättern. Dazu wurde die Arabidopsis Mutante, der das cytosolische Disproportionating Enzym 2 (DPE2) und die plastidiale Glucanphosphorylase 1 (PHS1) fehlen (dpe2/phs1), untersucht. Ebenfalls wurden Dreifachmutanten im Hintergund von dpe2/phs1, denen Starch excess 4 (SEX4), Isoamylase 3, Phosphoglucan-Wasser-Dikinase (PWD) oder das Disproportionating Enzym 1 (DPE1) fehlen, erzeugt. Die Analyse zeigt, dass die Anzahl der Stärkegranula pro Chloroplast nicht festgelegt ist und während des gesamten Wachstums der Pflanze reguliert wird. Diese Daten liefern ein verbessertes Verständnis über die Komplexität der Kontrollmechanismen der Granulazahlregulation in Chloroplasten. Die Untersuchung des sink Gewebes soll die Beziehung zwischen dem Stärkestoffwechsel und dem Lipidstoffwechselweg in Ölpalmenfrüchten verdeutlichen. Diese Studie wurde durchgeführt, um die Veränderung von Stärkeparametern, die Häufigkeit von Metaboliten und die Genexpression während der Entwicklung von Ölpalmenfrüchten mit unterschiedlichen Ölausbeuten zu erforschen. Die Analyse zeigt, dass sowohl Stärke als auch Saccharose als reliable Biomarker für den Ölertrag von Ölpalmen verwendet werden können. Darüber hinaus konnte bewiesen werden, dass die mit dem Stärkestoffwechsel verbundenen Enzymisoformen die Ölproduktion in Ölpalmenfrüchten beeinflussen. Insgesamt liefert diese Arbeit neue Informationen über den Stärkestoffwechsel im source Gewebe von A.thaliana und im sink von E.guineensis. Die in dieser Arbeit gezeigten Ergebnisse können für viele Anwendungen genutzt werden, z. B. für die Veränderung der Stärkeparameter in anderen Pflanzen für spezifische Bedürfnisse. KW - starch KW - oil palm KW - Arabidopsis thaliana KW - source and sink KW - Arabidopsis thaliana KW - Palmöl KW - Source und Sink KW - Stärke Y1 - 2023 ER - TY - JOUR A1 - Córdoba, Sandra Correa A1 - Tong, Hao A1 - Burgos, Asdrubal A1 - Zhu, Feng A1 - Alseekh, Saleh A1 - Fernie, Alisdair A1 - Nikoloski, Zoran T1 - Identification of gene function based on models capturing natural variability of Arabidopsis thaliana lipid metabolism JF - Nature Communications N2 - The use of automated tools to reconstruct lipid metabolic pathways is not warranted in plants. Here, the authors construct Plant Lipid Module for Arabidopsis rosette using constraint-based modeling, demonstrate its integration in other plant metabolic models, and use it to dissect the genetic architecture of lipid metabolism. Lipids play fundamental roles in regulating agronomically important traits. Advances in plant lipid metabolism have until recently largely been based on reductionist approaches, although modulation of its components can have system-wide effects. However, existing models of plant lipid metabolism provide lumped representations, hindering detailed study of component modulation. Here, we present the Plant Lipid Module (PLM) which provides a mechanistic description of lipid metabolism in the Arabidopsis thaliana rosette. We demonstrate that the PLM can be readily integrated in models of A. thaliana Col-0 metabolism, yielding accurate predictions (83%) of single lethal knock-outs and 75% concordance between measured transcript and predicted flux changes under extended darkness. Genome-wide associations with fluxes obtained by integrating the PLM in diel condition- and accession-specific models identify up to 65 candidate genes modulating A. thaliana lipid metabolism. Using mutant lines, we validate up to 40% of the candidates, paving the way for identification of metabolic gene function based on models capturing natural variability in metabolism. KW - Biochemical networks KW - Biochemical reaction networks KW - Genetic models KW - Plant molecular biology Y1 - 2023 U6 - https://doi.org/10.1038/s41467-023-40644-9 SN - 2041-1723 VL - 14 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Watanabe, Mutsumi A1 - Tohge, Takayuki A1 - Balazadeh, Salma A1 - Erban, Alexander A1 - Giavalisco, Patrick A1 - Kopka, Joachim A1 - Mueller-Roeber, Bernd A1 - Fernie, Alisdair A1 - Hoefgen, Rainer T1 - Comprehensive Metabolomics Studies of Plant Developmental Senescence JF - Plant Senescence: Methods and Protocols N2 - Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies. KW - Senescence KW - Metabolomics KW - Arabidopsis KW - GC/MS KW - LC/MS KW - HPLC KW - IC Y1 - 2018 SN - 978-1-4939-7672-0 SN - 978-1-4939-7670-6 U6 - https://doi.org/10.1007/978-1-4939-7672-0_28 SN - 1064-3745 SN - 1940-6029 VL - 1744 SP - 339 EP - 358 PB - Humana Press CY - Totowa ER - TY - THES A1 - Apodiakou, Anastasia T1 - Analysis of the regulation of SDI genes, unravelling the role of the SLIM1 transcription factor, and the SNRK3.15 kinase in Arabidopsis under sulfur deprivation Y1 - 2024 ER - TY - THES A1 - Peng, Maolin T1 - The role of prion-like domains in plant temperatur sensing Y1 - 2023 ER - TY - JOUR A1 - Zheng, Chunming A1 - Tönjes, Ralf A1 - Pikovskij, Arkadij T1 - Transition to synchrony in a three-dimensional swarming model with helical trajectories JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate the transition from incoherence to global collective motion in a three-dimensional swarming model of agents with helical trajectories, subject to noise and global coupling. Without noise this model was recently proposed as a generalization of the Kuramoto model and it was found that alignment of the velocities occurs discontinuously for arbitrarily small attractive coupling. Adding noise to the system resolves this singular limit and leads to a continuous transition, either to a directed collective motion or to center-of-mass rotations. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.014216 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Tönjes, Ralf A1 - Pikovsky, Arkady T1 - Low-dimensional description for ensembles of identical phase oscillators subject to Cauchy noise JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study ensembles of globally coupled or forced identical phase oscillators subject to independent white Cauchy noise. We demonstrate that if the oscillators are forced in several harmonics, stationary synchronous regimes can be exactly described with a finite number of complex order parameters. The corresponding distribution of phases is a product of wrapped Cauchy distributions. For sinusoidal forcing, the Ott-Antonsen low-dimensional reduction is recovered. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevE.102.052315 SN - 2470-0045 SN - 2470-0053 VL - 102 IS - 5 PB - American Physical Society CY - College Park ER - TY - THES A1 - Mirzaee, Zohreh T1 - Ecology and phylogeny of Mantodea of Iran and adjacent areas N2 - Mantodea, commonly known as mantids, have captivated researchers owing to their enigmatic behavior and ecological significance. This order comprises a diverse array of predatory insects, boasting over 2,400 species globally and inhabiting a wide spectrum of ecosystems. In Iran, the mantid fauna displays remarkable diversity, yet numerous facets of this fauna remain poorly understood, with a significant dearth of systematic and ecological research. This substantial knowledge gap underscores the pressing need for a comprehensive study to advance our understanding of Mantodea in Iran and its neighboring regions. The principal objective of this investigation was to delve into the ecology and phylogeny of Mantodea within these areas. To accomplish this, our research efforts concentrated on three distinct genera within Iranian Mantodea. These genera were selected due to their limited existing knowledge base and feasibility for in-depth study. Our comprehensive methodology encompassed a multifaceted approach, integrating morphological analysis, molecular techniques, and ecological observations. Our research encompassed a comprehensive revision of the genus Holaptilon, resulting in the description of four previously unknown species. This extensive effort substantially advanced our understanding of the ecological roles played by Holaptilon and refined its systematic classification. Furthermore, our investigation into Nilomantis floweri expanded its known distribution range to include Iran. By conducting thorough biological assessments, genetic analyses, and ecological niche modeling, we obtained invaluable insights into distribution patterns and genetic diversity within this species. Additionally, our research provided a thorough comprehension of the life cycle, behaviors, and ecological niche modeling of Blepharopsis mendica, shedding new light on the distinctive characteristics of this mantid species. Moreover, we contributed essential knowledge about parasitoids that infect mantid ootheca, laying the foundation for future studies aimed at uncovering the intricate mechanisms governing ecological and evolutionary interactions between parasitoids and Mantodea. N2 - Mantodea, gemeinhin als Gottesanbeterinnen bekannt, haben Forscher aufgrund ihres rätselhaften Verhaltens und ihrer ökologischen Bedeutung in ihren Bann gezogen. Diese Ordnung umfasst eine Vielzahl räuberischer Insekten, von denen es weltweit über 2 400 Arten gibt und die ein breites Spektrum von Ökosystemen bewohnen. Im Iran weist die Gottesanbeterinnen-Fauna eine bemerkenswerte Vielfalt auf, doch zahlreiche Aspekte dieser Fauna sind nach wie vor nur unzureichend erforscht, und es besteht ein erheblicher Mangel an systematischen und ökologischen Untersuchungen. Diese beträchtliche Wissenslücke unterstreicht den dringenden Bedarf an einer umfassenden Studie, um unser Verständnis der Mantodea im Iran und den angrenzenden Regionen zu verbessern. Das Hauptziel dieser Untersuchung bestand darin, die Ökologie und Phylogenie der Mantodea in diesen Gebieten zu erforschen. Um dies zu erreichen, konzentrierten sich unsere Forschungsarbeiten auf drei verschiedene Gattungen innerhalb der iranischen Mantodea. Diese Gattungen wurden aufgrund ihrer begrenzten Wissensbasis und ihrer Eignung für eingehende Untersuchungen ausgewählt. Unsere umfassende Methodik umfasste einen vielschichtigen Ansatz, der morphologische Analysen, molekulare Techniken und ökologische Beobachtungen einbezog. Unsere Forschung umfasste eine umfassende Revision der Gattung Holaptilon, die zur Beschreibung von vier bisher unbekannten Arten führte. Diese umfangreichen Arbeiten haben unser Verständnis der ökologischen Rolle von Holaptilon wesentlich verbessert und die systematische Einordnung der Gattung verfeinert. Darüber hinaus konnten wir durch die Untersuchung von Nilomantis floweri ihr bekanntes Verbreitungsgebiet auf den Iran ausweiten. Durch gründliche biologische Untersuchungen, genetische Analysen und ökologische Nischenmodellierung erhielten wir unschätzbare Einblicke in die Verbreitungsmuster und die genetische Vielfalt dieser Art. Darüber hinaus lieferten unsere Forschungsarbeiten ein umfassendes Verständnis des Lebenszyklus, der Verhaltensweisen und der ökologischen Nischenmodellierung von Blepharopsis mendica und warfen ein neues Licht auf die besonderen Merkmale dieser Mantidenart. Darüber hinaus lieferten wir wichtige Erkenntnisse über Parasitoide, die Ootheken von Gottesanbeterinnen befallen, und legten damit den Grundstein für künftige Studien, die darauf abzielen, die komplizierten Mechanismen aufzudecken, die die ökologischen und evolutionären Wechselwirkungen zwischen Parasitoiden und Mantodea steuern. T2 - Ökologie und Phylogenie der Mantodea des Iran und angrenzender Gebiete KW - Mantodea KW - Ecology KW - Phylogeny KW - Mantodea KW - Ökologie KW - Phylogeni Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-652739 ER - TY - THES A1 - Friese, Sharleen T1 - Trace elements and genomic instability in the murine brain N2 - The trace elements copper, iron, manganese, selenium and zinc are essential micronutrients involved in various cellular processes, all with different responsibilities. Based on that importance, their concentrations are tightly regulated in mammalian organisms. The maintenance of those levels is termed trace element homeostasis and mediated by a combination of processes regulating absorption, cellular and systemic transport mechanisms, storage and effector proteins as well as excretion. Due to their chemical properties, some functions of trace elements overlap, as seen in antioxidative defence, for example, comprising an expansive spectrum of antioxidative proteins and molecules. Simultaneously, the same is true for regulatory mechanisms, causing trace elements to influence each other’s homeostases. To mimic physiological conditions, trace elements should therefore not be evaluated separately but considered in parallel. While many of these homeostatic mechanisms are well-studied, for some elements new pathways are still discovered. Additionally, the connections between dietary trace element intake, trace element status and health are not fully unraveled, yet. With current demographic developments, also the influence of ageing as well as of certain pathological conditions is of increasing interest. Here, the TraceAge research unit was initiated, aiming to elucidate the homeostases of and interactions between essential trace elements in healthy and diseased elderly. While human cohort studies can offer insights into trace element profiles, also in vivo model organisms are used to identify underlying molecular mechanisms. This is achieved by a set of feeding studies including mice of various age groups receiving diets of reduced trace element content. To account for cognitive deterioration observed with ageing, neurodegenerative diseases, as well as genetic mutations triggering imbalances in cerebral trace element concentrations, one TraceAge work package focuses on trace elements in the murine brain, specifically the cerebellum. In that context, concentrations of the five essential trace elements of interest, copper, iron, manganese, selenium and zinc, were quantified via inductively coupled plasma-tandem mass spectrometry, revealing differences in priority of trace element homeostases between brain and liver. Upon moderate reduction of dietary trace element supply, cerebellar concentrations of copper and manganese deviated from those in adequately supplied animals. By further reduction of dietary trace element contents, also concentrations of cerebellar iron and selenium were affected, but not as strong as observed in liver tissue. In contrast, zinc concentrations remained stable. Investigation of aged mice revealed cerebellar accumulation of copper and iron, possibly contributing to oxidative stress on account of their redox properties. Oxidative stress affects a multitude of cellular components and processes, among them, next to proteins and lipids, also the DNA. Direct insults impairing its integrity are of relevance here, but also indirect effects, mediated by the machinery ensuring genomic stability and its functionality. The system includes the DNA damage response, comprising detection of endogenous and exogenous DNA lesions, decision on subsequent cell fate and enabling DNA repair, which presents another pillar of genomic stability maintenance. Also in proteins of this machinery, trace elements act as cofactors, shaping the hypothesis of impaired genomic stability maintenance under conditions of disturbed trace element homeostasis. To investigate this hypothesis, a variety of approaches was used, applying OECD guidelines Organisation for Economic Co-operation and Development, adapting existing protocols for use in cerebellum tissue and establishing new methods. In order to assess the impact of age and dietary trace element depletion on selected endpoints estimating genomic instability, DNA damage and DNA repair were investigated. DNA damage analysis, in particular of DNA strand breaks and oxidatively modified DNA bases, revealed stable physiological levels which were neither affected by age nor trace element supply. To examine whether this is a result of increased repair rates, two steps characteristic for base excision repair, namely DNA incision and ligation activity, were studied. DNA glycosylases and DNA ligases were not reduced in their activity by age or trace element depletion, either. Also on the level of gene expression, major proteins involved in genomic stability maintenance were analysed, mirroring results obtained from protein studies. To conclude, the present work describes homeostatic regulation of trace elements in the brain, which, in absence of genetic mutations, is able to retain physiological levels even under conditions of reduced trace element supply to a certain extent. This is reflected by functionality of genomic stability maintenance mechanisms, illuminating the prioritization of the brain as vital organ. N2 - Als essentielle Mikronährstoffe spielen die Spurenelemente Kupfer, Eisen, Mangan, Selen und Zink eine wichtige Rolle für eine Vielzahl zellulärer Prozesse. Aufgrund dessen unterliegen ihre Konzentrationen in der Peripherie einer strengen Regulation. Die Aufrechterhaltung dieser Konzentrationen wird als Spurenelementhomöostase bezeichnet und beruht auf der Kombination verschiedener Mechanismen hinsichtlich ihrer Absorption, des zellulären und systemischen Transports, der Regulation von Speicher- und Effektorproteinen sowie ihrer jeweiligen Exkretion. Aufgrund ihrer chemischen Eigenschaften überschneiden sich einige Funktionen der Spurenelemente. Beispielsweise ist hier die antioxidative Abwehr zu nennen, an welcher eine Vielzahl verschiedener antioxidativer Moleküle und Proteine beteiligt sind. Gleiches gilt für regulative Mechanismen, wodurch Spurenelemente unter Umständen ihre jeweiligen Homöostasen gegenseitig beeinflussen können. Um physiologische Bedingungen abzubilden, sollten Spurenelemente somit nicht isoliert betrachtet, sondern gemeinsam untersucht werden. Obwohl viele homöostatische Mechanismen bereits gut erforscht sind, werden für einige Elemente immer noch neue Stoffwechselwege identifiziert. Darüber hinaus sind auch die Zusammenhänge zwischen der Spurenelementaufnahme aus der Nahrung sowie dem Spurenelement- und Gesundheitsstatus noch nicht vollständig aufgeklärt. Im Zuge der aktuellen demografischen Entwicklung steigt zudem das Interesse daran, den Einfluss des Alterungsprozesses sowie bestimmter Erkrankungen zu untersuchen. In diesem Kontext wurde die Forschungsgruppe TraceAge gegründet, welche dazu beitragen soll, zum einen die homöostatische Regulation und zum anderen die Interaktionen essentieller Spurenelemente in gesunden und erkrankten älteren Menschen zu untersuchen. Hierbei werden einerseits humane Kohortenstudien beprobt, so dass Spurenelementprofile erstellt werden können. Darüber hinaus werden auch in vivo Modellorganismen verwendet, um zugrundeliegende molekulare Mechanismen zu erfassen. In murinen Fütterungsstudien erhielten Tiere unterschiedlicher Altersgruppen deshalb eine spurenelementreduzierte Diät. Um kognitive Beeinträchtigungen zu beachten, wie sie neben dem Altern auch bei neurodegenerativen Erkrankungen sowie bestimmten genetischen Mutationen, meist im Zusammenhang mit Spurenelementdishomöostasen, auftreten, konzentriert sich ein Projektbereich auf die Wechselwirkung von Spurenelementen im murinen Gehirn, wobei hier der Fokus auf das Cerebellum gelegt wurde. In diesem Zusammenhang wurden die Konzentrationen fünf essentieller Spurenelemente, Kupfer, Eisen, Mangan, Selen und Zink, mittels Massenspektrometrie mit induktiv gekoppeltem Plasma in den Organen der Tiere quantifiziert, wodurch sich Unterschiede in der Priorität der Aufrechterhaltung von Spurenelementhomöostasen zwischen Gehirn und Leber aufzeigten. Eine moderate Verringerung der Spurenelementgehalte in der gefütterten Diät wirkte sich dabei besonders auf die Konzentrationen von cerebellärem Kupfer und Mangan aus. Bei weiterer Spurenelementreduktion sanken auch die Konzentrationen von cerebellärem Eisen und Selen. Im Vergleich zur Leber waren diese Abnahmen jedoch weniger ausgeprägt. Im Gegensatz dazu blieben die Zinkkonzentrationen in Leber und Gehirn unverändert. Untersuchungen in älteren Mäusen zeigten eine Akkumulation von Kupfer und Eisen im Cerebellum. Möglicherweise trägt dies durch deren Redoxeigenschaften zur Entstehung von oxidativem Stress bei. Oxidativer Stress wirkt sich auf eine Vielzahl zellulärer Bestandteile, wie Proteine und Lipide, aber auch auf die DNA, sowie auf den Ablauf von Zellvorgängen aus. Dabei sind einerseits direkte Einflüsse auf die strukturelle Integrität der DNA von Relevanz, andererseits auch indirekte Effekte, welche durch Mechanismen zur Aufrechterhaltung der genomischen Stabilität vermittelt werden. Dieses System beinhaltet die DNA-Schadensantwort, welche die Identifikation von DNA-Schäden und die Entscheidung über das weitere Schicksal der Zelle beinhaltet. Darüber hinaus ist diese für die Initiation der DNA-Reparatur verantwortlich, welche einen weiteren zentralen Mechanismus zur Instandhaltung genomischer Stabilität darstellt. Auch die Proteine der DNA-Reparaturwege nutzen Spurenelemente als Kofaktoren, worin die Hypothese zur Beeinträchtigung der Aufrechterhaltung der genomischen Stabilität unter Bedingungen einer inadäquaten Spurenelementversorgung begründet wird. Um diese Hypothese zu prüfen, wurden in der vorliegenden Arbeit diverse Methoden unter Anwendung von OECD-Richtlinien, der Anpassung existierender Versuchsvorschriften an die spezifischen Anforderungen von Cerebellumgewebe, sowie die Entwicklung neuer Methoden angewandt. Zur Einschätzung des Einflusses von Alter und Spurenelementversorgung aus der Diät auf verschiedene Endpunkte der genomischen Instabilität wurden insbesondere die DNA-Schädigungen und die DNA-Reparatur als molekulare Zielstrukturen analysiert. DNA-Schäden, primär DNA-Strangbrüche und oxidativ modifizierte DNA-Basen, wiesen dabei stabile, physiologische Level auf, die nicht durch Alter oder Spurenelementzufuhr verändert wurden. Um festzustellen, ob dies ein Resultat erhöhter Reparaturvorgänge ist, wurden zwei charakteristische Schritte der Basenexzisionsreparatur, DNA-Inzision und DNA-Ligation, näher untersucht. Es zeigte sich jedoch kein Einfluss auf die DNA-Reparatur einleitenden DNA-Glykosylasen sowie auf die DNA-Reparatur abschließenden DNA-Ligasen. Auch auf Genexpressionsebene wurden wichtige Gene der Proteine der genomischen Stabilität analysiert, welche die Ergebnisse proteinbezogener Studien widerspiegelten. Abschließend lässt sich somit feststellen, dass die Spurenelementhomöostase des Gehirns, selbst unter Bedingungen der defizienten Spurenelementzufuhr, streng reguliert ist. Dadurch können physiologische Spurenelementkonzentrationen bis zu einem gewissen Grad konstant gehalten werden. Dies spiegelt sich auch in der Funktionalität von Mechanismen zur Erhaltung genomischer Stabilität wider, welche die Priorität des Gehirns im Organismus unterstreicht. KW - ageing KW - cerebellum KW - DNA repair KW - genomic instability KW - trace elements KW - Alter KW - Cerebellum KW - DNA-Reparatur KW - genomische Instabilität KW - Spurenelemente Y1 - 2024 ER -