TY - JOUR A1 - Wiesner-Reinhold, Melanie A1 - Barknowitz, Gitte A1 - Florian, Simone A1 - Mewis, Inga A1 - Schumacher, Fabian A1 - Schreiner, Monika A1 - Glatt, Hansruedi T1 - 1-Methoxy-3-indolylmethyl DNA adducts in six tissues, and blood protein adducts, in mice under pak choi diet: time course and persistence JF - Archives of toxicology : official journal of EUROTOX N2 - We previously showed that purified 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate, a secondary plant metabolite in Brassica species, is mutagenic in various in vitro systems and forms DNA and protein adducts in mouse models. In the present study, we administered 1-MIM glucosinolate in a natural matrix to mice, by feeding a diet containing pak choi powder and extract. Groups of animals were killed after 1, 2, 4 and 8 days of pak choi diet, directly or, in the case of the 8-day treatment, after 0, 8 and 16 days of recovery with pak choi-free diet. DNA adducts [N-2-(1-MIM)-dG, N-6-(1-MIM)-dA] in six tissues, as well as protein adducts [tau N-(1-MIM)-His] in serum albumin (SA) and hemoglobin (Hb) were determined using UPLC-MS/MS with isotopically labeled internal standards. None of the samples from the 12 control animals under standard diet contained any 1-MIM adducts. All groups receiving pak choi diet showed DNA adducts in all six tissues (exception: lung of mice treated for a single day) as well as SA and Hb adducts. During the feeding period, all adduct levels continuously increased until day 8 (in the jejunum until day 4). During the 14-day recovery period, N-2-(1-MIM)-dG in liver, kidney, lung, jejunum, cecum and colon decreased to 52, 41, 59, 11, 7 and 2%, respectively, of the peak level. The time course of N-6-(1-MIM)-dA was similar. Immunohistochemical analyses indicated that cell turnover is a major mechanism of DNA adduct elimination in the intestine. In the same recovery period, protein adducts decreased more rapidly in SA than in Hb, to 0.7 and 37%, respectively, of the peak level, consistent with the differential turnover of these proteins. In conclusion, the pak choi diet lead to the formation of high levels of adducts in mice. Cell and protein turnover was a major mechanism of adduct elimination, at least in gut and blood. KW - 1-Methoxy-3-indolylmethyl glucosinolate KW - Neoglucobrassicin KW - DNA adducts KW - Blood protein adducts KW - Pak choi Y1 - 2019 U6 - https://doi.org/10.1007/s00204-019-02452-3 SN - 0340-5761 SN - 1432-0738 VL - 93 IS - 6 SP - 1515 EP - 1527 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Kopp, Johannes Florian A1 - Müller, Sandra Marie A1 - Pohl, Gabriele A1 - Lossow, Kristina A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A quick and simple method for the determination of six trace elements in mammalian serum samples using ICP-MS/MS JF - Journal of trace elements in medicine and biology N2 - In order to assess the individual trace element status of humans for either medical or scientific purposes, amongst others, blood serum levels are determined. Furthermore, animal models are used to study interactions of trace elements. Most published methods require larger amounts (500-1000 mu L) of serum to achieve a reliable determination of multiple trace elements. However, oftentimes, these amounts of serum cannot be dedicated to a single analysis and the amount available for TE-determination is much lower. Therefore, a published ICP-MS/MS method for trace element determination in serum was miniaturized, optimized and validated for the measurement of Mn, Fe, Cu Zn, I and Se in as little as 50 mu L of human and murine serum and is presented in this work. For validation, recoveries of multiple LOTs and levels from commercially available human reference serum samples were determined, infra- and inter-day variations were assessed and limits of detection and quantification determined. It is shown, that the method is capable of giving accurate and reproducible results for all six elements within the relevant concentration ranges for samples from humans living in central Europe as well as from laboratory mice. As a highlight, the achieved limits of detection and quantification for Mn were found to be at 0.02 mu g/L serum and 0.05 mu g/L serum, respectively, while using an alkaline diluent for the parallel determination of iodine. Y1 - 2019 U6 - https://doi.org/10.1016/j.jtemb.2019.04.015 SN - 0946-672X VL - 54 SP - 221 EP - 225 PB - Elsevier CY - München ER - TY - GEN A1 - Alker, Wiebke A1 - Schwerdtle, Tanja A1 - Schomburg, Lutz A1 - Haase, Hajo T1 - A Zinpyr-1-based fluorimetric microassay for free zinc in human serum T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Zinc is an essential trace element, making it crucial to have a reliable biomarker for evaluating an individual’s zinc status. The total serum zinc concentration, which is presently the most commonly used biomarker, is not ideal for this purpose, but a superior alternative is still missing. The free zinc concentration, which describes the fraction of zinc that is only loosely bound and easily exchangeable, has been proposed for this purpose, as it reflects the highly bioavailable part of serum zinc. This report presents a fluorescence-based method for determining the free zinc concentration in human serum samples, using the fluorescent probe Zinpyr-1. The assay has been applied on 154 commercially obtained human serum samples. Measured free zinc concentrations ranged from 0.09 to 0.42 nM with a mean of 0.22 ± 0.05 nM. It did not correlate with age or the total serum concentrations of zinc, manganese, iron or selenium. A negative correlation between the concentration of free zinc and total copper has been seen for sera from females. In addition, the free zinc concentration in sera from females (0.21 ± 0.05 nM) was significantly lower than in males (0.23 ± 0.06 nM). The assay uses a sample volume of less than 10 µL, is rapid and cost-effective and allows us to address questions regarding factors influencing the free serum zinc concentration, its connection with the body’s zinc status, and its suitability as a future biomarker for an individual’s zinc status. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1086 KW - zinc KW - free zinc KW - serum KW - biomarker KW - fluorescent probe KW - Zinypr-1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472833 SN - 1866-8372 IS - 1086 ER - TY - GEN A1 - Beckmann, Nadine A1 - Becker, Katrin Anne A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Kramer, Melanie A1 - Kühn, Claudine A1 - Schulz-Schaeffer, Walter J. A1 - Edwards, Michael J. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Acid sphingomyelinase deficiency ameliorates Farber disease T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can’t achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1087 KW - Farber disease KW - lysosomal storage disorders KW - acid ceramidase KW - acid sphingomyelinase KW - amitriptyline Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441282 SN - 1866-8372 IS - 1087 ER - TY - JOUR A1 - Schröter, David A1 - Neugart, Susanne A1 - Schreiner, Monika A1 - Grune, Tilman A1 - Rohn, Sascha A1 - Ott, Christiane T1 - Amaranth’s 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages JF - Nutrients N2 - For centuries, Amaranthus sp. were used as food, ornamentals, and medication. Molecular mechanisms, explaining the health beneficial properties of amaranth, are not yet understood, but have been attributed to secondary metabolites, such as phenolic compounds. One of the most abundant phenolic compounds in amaranth leaves is 2-caffeoylisocitric acid (C-IA) and regarding food occurrence, C-IA is exclusively found in various amaranth species. In the present study, the anti-inflammatory activity of C-IA, chlorogenic acid, and caffeic acid in LPS-challenged macrophages (RAW 264.7) has been investigated and cellular contents of the caffeic acid derivatives (CADs) were quantified in the cells and media. The CADs were quantified in the cell lysates in nanomolar concentrations, indicating a cellular uptake. Treatment of LPS-challenged RAW 264.7 cells with 10 µM of CADs counteracted the LPS effects and led to significantly lower mRNA and protein levels of inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin 6, by directly decreasing the translocation of the nuclear factor κB/Rel-like containing protein 65 into the nucleus. This work provides new insights into the molecular mechanisms that attribute to amaranth’s anti-inflammatory properties and highlights C-IA’s potential as a health-beneficial compound for future research. KW - inflammation KW - caffeic acid derivatives KW - RAW 264 KW - 7 macrophages KW - NF-kappa B KW - amaranth Y1 - 2019 U6 - https://doi.org/10.3390/nu11030571 SN - 2072-6643 VL - 11 IS - 3 PB - MDPI CY - Basel ER - TY - GEN A1 - Ponce, Carol Barahona A1 - Scherer, Dominique A1 - Boekstegers, Felix A1 - Garate-Calderon, Valentina A1 - Jenab, Mazda A1 - Aleksandrova, Krasimira A1 - Katzke, Verena A1 - Weiderpass, Elisabete A1 - Bonet, Catalina A1 - Moradi, Tahereh A1 - Fischer, Krista A1 - Bossers, Willem A1 - Brenner, Hermann A1 - Schöttker, Ben A1 - Holleczek, Bernd A1 - Hveem, Kristian A1 - Eklund, Niina A1 - Voelker, Uwe A1 - Waldenberger, Melanie A1 - Bermejo, Justo Lorenzo T1 - Arsenic and gallbladder cancer risk BT - Mendelian randomization analysis of European prospective data T2 - International journal of cancer KW - arsenic KW - gallbladder cancer KW - Mendelian randomization Y1 - 2019 U6 - https://doi.org/10.1002/ijc.32837 SN - 0020-7136 SN - 1097-0215 VL - 146 IS - 9 SP - 2648 EP - 2650 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Eichelmann, Fabian A1 - Schulze, Matthias Bernd A1 - Wittenbecher, Clemens A1 - Menzel, Juliane A1 - Weikert, Cornelia A1 - di Giuseppe, Romina A1 - Biemann, Ronald A1 - Isermann, Berend A1 - Fritsche, Andreas A1 - Boeing, Heiner A1 - Aleksandrova, Krasimira T1 - Association of Chemerin Plasma Concentration With Risk of Colorectal Cancer JF - JAMA network open N2 - IMPORTANCE Inflammatory processes have been suggested to have an important role in colorectal cancer (CRC) etiology. Chemerin is a recently discovered inflammatory biomarker thought to exert chemotactic, adipogenic, and angiogenic functions. However, its potential link with CRC has not been sufficiently explored. OBJECTIVE To evaluate the prospective association of circulating plasma chemerin concentrations with incident CRC. DESIGN, SETTING, AND PARTICIPANTS Prospective case-cohort study based on 27 548 initially healthy participants from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam cohort who were followed for up to 16 years. Baseline study information and samples were collected between August 23, 1994, and September 25, 1998. Recruitment was according to random registry sampling from the geographical area of Potsdam, Germany, and surrounding municipalities. The last date of study follow-up was May 10, 2010. Statistical analysis was conducted in 2018. MAIN OUTCOMES AND MEASURES Incident CRC, colon cancer, and rectal cancer. Baseline chemerin plasma concentrations were measured by enzyme-linked immunosorbent assay. CONCLUSIONS AND RELEVANCE This study found that the association between chemerin concentration and the risk of incident CRC was linear and independent of established CRC risk factors. Further studies are warranted to evaluate chemerin as a novel immune-inflammatory agent in colorectal carcinogenesis. Y1 - 2019 U6 - https://doi.org/10.1001/jamanetworkopen.2019.0896 SN - 2574-3805 VL - 2 IS - 3 PB - American Veterinary Medical Association CY - Chicago ER - TY - JOUR A1 - Wittenbecher, Clemens A1 - Kuxhaus, Olga A1 - Boeing, Heiner A1 - Stefan, Norbert A1 - Schulze, Matthias Bernd T1 - Associations of short stature and components of height with incidence of type 2 diabetes BT - mediating effects of cardiometabolic risk factors JF - Diabetologia : journal of the European Association for the Study of Diabetes (EASD) N2 - Aims/hypothesis This study aimed to evaluate associations of height as well as components of height (sitting height and leg length) with risk of type 2 diabetes and to explore to what extent associations are explainable by liver fat and cardiometabolic risk markers. Methods A case-cohort study within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study comprising 26,437 participants who provided blood samples was designed. We randomly selected a subcohort of 2500 individuals (2029 diabetes-free at baseline and with anamnestic, anthropometrical and metabolic data for analysis). Of the 820 incident diabetes cases identified in the full cohort during 7 years of follow-up, 698 remained for analyses after similar exclusions. Results After adjustment for age, potential lifestyle confounders, education and waist circumference, greater height was related to lower diabetes risk (HR per 10 cm, men 0.59 [95% CI 0.47, 0.75] and women 0.67 [0.51, 0.88], respectively). Leg length was related to lower risk among men and women, but only among men if adjusted for total height. Adjustment for liver fat and triacylglycerols, adiponectin and C-reactive protein substantially attenuated associations between height and diabetes risk, particularly among women. Conclusions/interpretation We observed inverse associations between height and risk of type 2 diabetes, which was largely related to leg length among men. The inverse associations may be partly driven by lower liver fat content and a more favourable cardiometabolic profile. KW - Adult height KW - Blood pressure KW - Diabetes incidence KW - Leg length KW - Liver fat KW - Short stature KW - Trunk length Y1 - 2019 U6 - https://doi.org/10.1007/s00125-019-04978-8 SN - 0012-186X SN - 1432-0428 VL - 62 IS - 12 SP - 2211 EP - 2221 PB - Springer CY - New York ER - TY - JOUR A1 - Duydu, Yalcin A1 - Basaran, Nursen A1 - Yalcin, Can Özgür A1 - Ustundag, Aylin A1 - Aydin, Sevtap A1 - Anlar, Hatice Gul A1 - Bacanli, Merve A1 - Aydos, Kaan A1 - Atabekoglu, Cem Somer A1 - Golka, Klaus A1 - Ickstadt, Katja A1 - Schwerdtle, Tanja A1 - Werner, Matthias A1 - Bolt, Hermann M. T1 - Boron-exposed male workers in Turkey BT - no change in sperm Y:X chromosome ratio and in offspring's sex ratio JF - Archives of toxicology : official journal of EUROTOX N2 - Boron-associated shifts in sex ratios at birth were suggested earlier and attributed to a decrease in Y- vs. X-bearing sperm cells. As the matter is pivotal in the discussion of reproductive toxicity of boron/borates, re-investigation in a highly borate-exposed population was required. In the present study, 304 male workers in Bandirma and Bigadic (Turkey) with different degrees of occupational and environmental exposure to boron were investigated. Boron was quantified in blood, urine and semen, and the persons were allocated to exposure groups along B blood levels. In the highest ("extreme") exposure group (n = 69), calculated mean daily boron exposures, semen boron and blood boron concentrations were 44.91 +/- 18.32 mg B/day, 1643.23 +/- 965.44 ng B/g semen and 553.83 +/- 149.52 ng B/g blood, respectively. Overall, an association between boron exposure and Y:X sperm ratios in semen was not statistically significant (p > 0.05). Also, the mean Y:X sperm ratios in semen samples of workers allocated to the different exposure groups were statistically not different in pairwise comparisons (p > 0.05). Additionally, a boron-associated shift in sex ratio at birth towards female offspring was not visible. In essence, the present results do not support an association between boron exposure and decreased Y:X sperm ratio in males, even under extreme boron exposure conditions. KW - Paternal exposure KW - Boron exposure KW - Y:X chromosome ratio KW - Sex ratio at birth Y1 - 2019 U6 - https://doi.org/10.1007/s00204-019-02391-z SN - 0340-5761 SN - 1432-0738 VL - 93 IS - 3 SP - 743 EP - 751 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Klopsch, Rebecca A1 - Baldermann, Susanne A1 - Hanschen, Franziska S. A1 - Voss, Alexander A1 - Rohn, Sascha A1 - Schreiner, Monika A1 - Neugart, Susanne T1 - Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale JF - Food chemistry N2 - Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread. KW - Ontogeny KW - Brassica KW - Glucosinolate breakdown product KW - Flavonoid KW - Carotenoid KW - Thermal processing Y1 - 2019 U6 - https://doi.org/10.1016/j.foodchem.2019.05.113 SN - 0308-8146 SN - 1873-7072 VL - 295 SP - 412 EP - 422 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Frombach, Janna A1 - Unbehauen, Michael A1 - Kurniasih, Indah N. A1 - Schumacher, Fabian A1 - Volz, Pierre A1 - Hadam, Sabrina A1 - Rancan, Fiorenza A1 - Blume-Peytavi, Ulrike A1 - Kleuser, Burkhard A1 - Haag, Rainer A1 - Alexiev, Ulrike A1 - Vogt, Annika T1 - Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin JF - Journal of controlled release N2 - In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial. KW - Drug delivery KW - Skin penetration KW - Cellular uptake KW - Nanoparticles KW - Dendritic cells KW - High resolution microscopy Y1 - 2019 U6 - https://doi.org/10.1016/j.jconrel.2019.02.028 SN - 0168-3659 SN - 1873-4995 VL - 299 SP - 138 EP - 148 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kluth, Oliver A1 - Stadion, Mandy A1 - Gottmann, Pascal A1 - Aga-Barfknecht, Heja A1 - Jähnert, Markus A1 - Scherneck, Stephan A1 - Vogel, Heike A1 - Krus, Ulrika A1 - Seelig, Anett A1 - Ling, Charlotte A1 - Gerdes, Jantje A1 - Schürmann, Annette T1 - Decreased expression of cilia genes in pancreatic islets as a risk factor for type 2 diabetes in mice and humans JF - Cell reports N2 - An insufficient adaptive beta-cell compensation is a hallmark of type 2 diabetes (T2D). Primary cilia function as versatile sensory antennae regulating various cellular processes, but their role on compensatory beta-cell replication has not been examined. Here, we identify a significant enrichment of downregulated, cilia-annotated genes in pancreatic islets of diabetes-prone NZO mice as compared with diabetes-resistant B6-ob/ob mice. Among 327 differentially expressed mouse cilia genes, 81 human orthologs are also affected in islets of diabetic donors. Islets of nondiabetic mice and humans show a substantial overlap of upregulated cilia genes that are linked to cell-cycle progression. The shRNA-mediated suppression of KIF3A, essential for ciliogenesis, impairs division of MINE beta cells as well as in dispersed primary mouse and human islet cells, as shown by decreased BrdU incorporation. These findings demonstrate the substantial role of cilia-gene regulation on islet function and T2D risk. Y1 - 2019 U6 - https://doi.org/10.1016/j.celrep.2019.02.056 SN - 2211-1247 VL - 26 IS - 11 SP - 3027 EP - 3036 PB - Cell Press CY - Maryland Heights ER - TY - GEN A1 - Rancan, Fiorenza A1 - Volkmann, Hildburg A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Stanko, Jessica Isolde A1 - Kleuser, Burkhard A1 - Blume-Peytavi, Ulrike A1 - Calderón, Marcelo A1 - Vogt, Annika T1 - Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1339 KW - tacrolimus formulation KW - nanogels KW - skin penetration KW - drug delivery KW - human excised skin KW - Jurkat cells Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473270 SN - 1866-8372 IS - 1339 ER - TY - JOUR A1 - Rancan, Fiorenza A1 - Volkmann, Hildburg A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Stanko, Jessica Isolde A1 - Kleuser, Burkhard A1 - Blume-Peytavi, Ulrike A1 - Calderon, Marcelo A1 - Vogt, Annika T1 - Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels JF - Pharmaceutics : Molecular Diversity Preservation International N2 - Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions. KW - tacrolimus formulation KW - nanogels KW - skin penetration KW - drug delivery KW - human excised skin KW - Jurkat cells Y1 - 2019 U6 - https://doi.org/10.3390/pharmaceutics11080394 SN - 1999-4923 VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rund, Katharina M. A1 - Heylmann, Daniel A1 - Seiwert, Nina A1 - Wecklein, Sabine A1 - Oger, Camille A1 - Galano, Jean-Marie A1 - Durand, Thierry A1 - Chen, Rongjun A1 - Güler, Faikah A1 - Fahrer, Jörg A1 - Bornhorst, Julia A1 - Schebb, Nils Helge T1 - Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress JF - Prostaglandins & Other Lipid Mediators N2 - In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation. Their formation was analyzed in correlation with the formation of isoprostanes (IsoP), which are commonly used as biomarkers of oxidative stress. Five oxidative stress models were investigated including incubations of three human cell lines as well as the in vivo model Caenorhabditis elegans with tert-butyl hydroperoxide (t-BOOH) and analysis of murine kidney tissue after renal ischemia reperfusion injury (IRI). A comprehensive set of IsoP and epoxy-PUFA derived from biologically relevant PUFA (ARA, EPA and DHA) was simultaneously quantified by LC-ESI(-)-MS/MS. Following renal IRI only a moderate increase in the kidney levels of IsoP and no relevant change in the trans/cis-epoxy-PUFA ratio was observed. In all investigated cell lines (HCT-116, HepG2 and Caki-2) as well as C. elegans a dose dependent increase of both, IsoP and the trans/cis-epoxy-PUFA ratio in response to the applied t-BOOH was observed. The different cell lines showed a distinct time dependent pattern consistent for both classes of autoxidatively formed oxylipins. Clear and highly significant correlations of the trans/cisepoxy-PUFA ratios with the IsoP levels were found in all investigated cell lines and C. elegans. Based on this, we suggest the trans/cis-epoxy-PUFA ratio as potential new biomarker of oxidative stress, which warrants further investigation. KW - Isoprostane KW - Trans-epoxy-fatty acid KW - Oxidative stress KW - Biomarker KW - Oxylipin KW - Eicosanoid Y1 - 2019 U6 - https://doi.org/10.1016/j.prostaglandins.2019.04.004 SN - 1098-8823 SN - 2212-196X VL - 144 PB - Elsevier CY - New York ER - TY - JOUR A1 - Dietrich, Stefan A1 - Jacobs, Simone A1 - Zheng, Ju-Sheng A1 - Meidtner, Karina A1 - Schwingshackl, Lukas A1 - Schulze, Matthias Bernd T1 - Gene-lifestyle interaction on risk of type 2 diabetes BT - A systematic review JF - Obesity reviews : an official journal of the International Association for the Study of Obesity N2 - The pathophysiological influence of gene-lifestyle interactions on the risk to develop type 2 diabetes (T2D) is currently under intensive research. This systematic review summarizes the evidence for gene-lifestyle interactions regarding T2D incidence. MEDLINE, EMBASE, and Web of Science were systematically searched until 31 January 2019 to identify publication with (a) prospective study design; (b) T2D incidence; (c) gene-diet, gene-physical activity, and gene-weight loss intervention interaction; and (d) population who are healthy or prediabetic. Of 66 eligible publications, 28 reported significant interactions. A variety of different genetic variants and dietary factors were studied. Variants at TCF7L2 were most frequently investigated and showed interactions with fiber and whole grain on T2D incidence. Further gene-diet interactions were reported for, eg, a western dietary pattern with a T2D-GRS, fat and carbohydrate with IRS1 rs2943641, and heme iron with variants of HFE. Physical activity showed interaction with HNF1B, IRS1, PPAR gamma, ADRA2B, SLC2A2, and ABCC8 variants and weight loss interventions with ENPP1, PPAR gamma, ADIPOR2, ADRA2B, TNF alpha, and LIPC variants. However, most findings represent single study findings obtained in European ethnicities. Although some interactions have been reported, their conclusiveness is still low, as most findings were not yet replicated across multiple study populations. KW - diet KW - gene-lifestyle interaction KW - incident type 2 diabetes KW - physical activity KW - weight loss intervention Y1 - 2019 U6 - https://doi.org/10.1111/obr.12921 SN - 1467-7881 SN - 1467-789X VL - 20 IS - 11 SP - 1557 EP - 1571 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wardelmann, Kristina T1 - Hormonal regulation of neuronal mitochondrial unfolded protein response and its impact on metabolism N2 - The hypothalamus is the main brain area of central regulation of whole body metabolism through impacting food intake and energy expenditure. For the complex regulation, high amounts of energy are needed and mainly provided by mitochondria. Hence, mitochondrial function is crucial for cell homeostasis and modulates central insulin sensitivity. Thus, mitochondrial dysfunction is associated with insulin resistance in the brain and therefore is involved in the pathogenesis of type-2 diabetes (T2D). Mitochondrial health and protein homeostasis is propagated by mitochondrial stress responses like e.g. mitochondrial unfolded protein response (UPRmt). Therefore, studies regarding the regulation of mitochondrial homeostasis are crucial for understanding its effects on the central nervous system (CNS) for the progression of metabolic and nutrition-dependent disorders. One main aim of this thesis was to investigate the metabolic regulation of mitochondrial stress responsiveness in the hypothalamus. The observed results showed that functional ERK-dependent insulin signaling is needed for regulation of mitochondrial stress response (MSR) genes and positively impacted the metabolism by controlling mitochondrial proteostasis without affecting mitochondrial biogenesis. To further explore the role of MSR genes for brain cell homeostasis and its consequences for the metabolism, one of the key players - the mitochondrial chaperone heat shock protein 10 (Hsp10) – was studied in detail. Hsp10 expression was decreased in insulin-resistant, hyperglycemic db/db mice brains along with increased protein oxidation. Leptin, another key hormone in regulating metabolism, was able to induce Hsp10 in neurons. Appropriately, lentiviral-mediated knock down (KD) of Hsp10 introduced into hypothalamic CLU-183 cells induced mitochondrial dysfunction, altered mitochondrial dynamics and increased contact sites between mitochondria and endoplasmic reticulum (ER). In addition, Hsp10 KD caused cellular insulin resistance along with increasing oxidative stress specifically in mitochondrial fraction. Interestingly, acute Hsp10 KD in the arcuate nucleus of the hypothalamus in C57BL/6N male mice did not change body weight or food intake, but it increased plasma leptin concentrations suggesting an effect on global leptin signaling. It increased hepatic markers of gluconeogenesis and hepatic insulin resistance along with features of low-grade inflammation. Long-term studies of hypothalamic Hsp10 KD mice revealed unaltered systemic insulin sensitivity. The demonstrated increase in markers of hepatic gluconeogenesis of acute Hsp10 KD was still exhibited after 13 weeks, but insulin resistance in the liver was no longer observed. In conclusion, hypothalamic insulin action regulates MSR and ensures proper mitochondrial function which positively affects metabolism. In addition, hypothalamic Hsp10 acts as a modulator of both insulin and leptin signaling and is identified as pivotal for the regulation of central mitochondrial function as well as insulin sensitivity in the brain and it impacts liver function. It may present a regulator of brain-liver crosstalk influencing hepatic gluconeogenesis and insulin sensitivity through a novel regulatory signaling mechanism. N2 - Die zentrale Regulation des Metabolismus wird vom Hypothalamus gesteuert, indem diese Hirnregion die Nahrungsaufnahme sowie den Energieverbrauch reguliert. Dieser komplexe Regulations-Mechanismus benötigt eine enorme Menge an Energie, die hauptsächlich von Mitochondrien produziert wird. Somit ist die mitochondriale Funktion existenziell für die Zell-Homöostase und in einigen Studien konnte gezeigt werden, dass diese Funktion ebenfalls mit der zentralen Insulin-Sensitivität zusammenhängt. Mitochondriale Dysfunktion hingegen ist mit Insulin-Resistenz im Gehirn assoziiert und damit an der Pathogenese und Progression von Diabetes Typ 2 beteiligt. Mitochondriale Stressantworten wie zum Beispiel die mitochondriale ungefaltete Proteinantwort (mitochondrial unfolded stress response) ermöglichen die Protein-Homöostase und einwandfreie Funktion der Mitochondrien. Folglich sind Untersuchungen der Regulation der mitochondrialen Funktion von großer Bedeutung für das Verständnis der zentralnervösen Auswirkungen auf die Entwicklung ernährungsbedingter Störungen des Metabolismus. Eine der Zielstellungen dieser Doktorarbeit war die Untersuchung der metabolischen Regulation der hypothalamische Stressantwort der Mitochondrien. Die hier durchgeführten Studien zeigten, dass die funktionelle Insulin Signalkaskade für die Regulierung der mitochondrialen Stressantwort (MSR) benötigt wird und dies durch die Kontrolle der Proteostase der Mitochondrien positive Effekte auf den Metabolismus hat. Zur genaueren Klärung der Aufgabe der mitochondrialen Stressantwort für die Homöostase der Gehirnzelle und dessen Auswirkungen für den Metabolismus wurde eines der Mitglieder dieser Stressantwort, das mitochondriale Chaperon Hitzeschock-Protein 10 (Hsp10), näher untersucht. Zunächst konnte dargelegt werden, dass die Expression von Hsp10 in Gehirnen von Insulin-resistenten, hyperglykämischen db/db Mäusen verringert ist. Diese Mäuse zeigen zusätzlich eine Erhöhung der Oxidation von Proteinen im Gehirn, ein weiteres Merkmal des Krankheitsbildes von Diabetes Typ 2. Darüber hinaus zeigten die vorliegenden Studien, dass Leptin, ein weiteres für die Regulation des Metabolismus wichtiges Hormon, die Expression von Hsp10 in Neuronen induzieren konnte. Der lentiviral-vermittelte knockdown von Hsp10 in der hypothalamischen, neuronalen Zelllinie CLU 183 hingegen verursacht mitochondriale Dysfunktion, sowie eine veränderte mitochondriale Dynamik einhergehend mit erhöhtem Kontakt von Mitochondrien mit dem endoplasmatischen Retikulum. Zusätzlich wurde Mitochondrien-spezifischer oxidativer Stress von der Reduzierung von Hsp10 verursacht und eine Insulin-Resistenz ausgelöst. Interessanterweise beeinflusste der akute knockdown der Hsp10 Expression im Nucleus Arcuatus des Hypothalamus in männlichen C57BL/6N Mäusen weder das Körpergewicht noch die Futteraufnahme, jedoch war die Plasma-Konzentration von Leptin erhöht. Dies deutet auf einen Effekt von zentralem Hsp10 auf die systemische Leptin-Signalwirkung hin. Außerdem wurde durch die akute Verringerung von hypothalamischen Hsp10 PEPCK in der Leber induziert, ein wichtiges Protein der Gluconeogenese, sowie eine hepatische Insulin-Resistenz ausgelöst, verbunden mit Anzeichen einer schwachen Inflammation dieses Gewebes. Bei verlängerter Reduktion der Expression von Hsp10 im Hypothalamus wurde die systemische Insulin-Sensitivität der Mäuse nicht verändert. Die hepatische Insulin-Resistenz war nach 13 Wochen des hypothalamischen knockdown von Hsp10 in C57BL/6N Mäusen nicht mehr zu beobachten, aber die Induktion des Gluconeogenese-Gens PEPCK in der Leber war weiterhin existent. Zusammenfassend zeigt diese Dissertation, dass die hypothalamische Insulin-Signalwirkung die mitochondriale Stressantwort reguliert und somit die Funktion der Mitochondrien gewährleistet, was den Metabolismus positiv beeinflusst. Des Weiteren deuten die diskutierten Ergebnisse darauf hin, dass Hsp10 im Hypothalamus ein Modulator der Insulin- sowie Leptinsignalwirkung des Körpers ist. Hsp10 ist entscheidend für die Regulierung der zentralen Funktion der Mitochondrien sowie der Insulin-Sensitivität in Gehirn und beeinflusst die Leberfunktion. Die Konsequenzen der Verringerung von Hsp10 im Hypothalamus modulieren die hepatische Gluconeogenese und Insulin-Sensitivität. Daraus folgend wird Hsp10 als neuer Regulator der Kommunikation zwischen Gehirn und Leber identifiziert, mit einem in diesem Falle noch unbekannten Mechanismus der Signalweiterleitung zwischen den beiden Organen. Y1 - 2019 ER - TY - THES A1 - Gottmann, Pascal T1 - In silico Analyse zur Klärung der Beteiligung von micro-RNAs, die in QTL lokalisiert sind, an den metabolischen Erkrankungen Adipositas und Typ-2-Diabetes mit Hilfe von Mausmodellen Y1 - 2019 ER - TY - JOUR A1 - Frede, Katja A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis N2 - Carotenoids as part of the photosystems are crucial for their assembly, light-harvesting, and photoprotection. Light of different wavelengths impacts the composition and structure of photosystems, thus offering the possibility to influence the carotenoid concentrations and composition in photosystems by illumination with specific narrow-banded light spectra. Key components involved in the regulation of gene transcription are still poorly characterized, particularly in leafy vegetables as compared to model plants. In particular, the effect of different light qualities and its connection to redox control mechanisms, which also determine the photosystem composition and structure, is not yet well understood. Furthermore, light quality effects are species-dependent, and thus, increase the need to perform research on individual vegetable species such as pak choi Brassica rapa ssp. chinensis. Here, we investigated the carotenoid concentrations and composition of pak choi sprouts grown for 6 days under blue, red, or white light emitting diodes (LEDs) as light source. After 6 days, the total carotenoid content was the highest under white and slightly reduced under blue or red LEDs. Blue, red, and white light differently affected the carotenoid composition mainly due to variations of the beta-carotene content which could be correlated to changes in the transcript levels of beta-carotene hydroxylase 1 (beta-OHASE1). Further investigations implied a redox controlled gene expression of beta-OHASE1. In addition, transcription factors related to light signaling and the circadian clock differed in their transcriptional abundance after exposure to blue and red light. RNA-Seq analysis also revealed increased transcript levels of genes encoding the outer antenna complex of photosystem II under red compared to blue light, indicating an adjustment of the photosystems to the different light qualities which possibly contributed to the alternations in the carotenoid content and composition. KW - Brassica rapa ssp. chinensis KW - beta-carotene hydroxylase KW - Carotenoids KW - LEDs KW - Light quality KW - Redox control Y1 - 2019 U6 - https://doi.org/10.1016/j.jphotobiol.2019.02.001 SN - 1011-1344 VL - 193 SP - 18 EP - 30 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Volkert, Dorothee A1 - Beck, Anne Marie A1 - Cederholm, Tommy A1 - Cereda, Emanuele A1 - Cruz-Jentoft, Alfonso J. A1 - Goisser, Sabine A1 - de Groot, Lisette A1 - Grosshauser, Franz A1 - Kiesswetter, Eva A1 - Norman, Kristina A1 - Pourhassan, Maryam A1 - Reinders, Ilse A1 - Roberts, Helen C. A1 - Rolland, Yves A1 - Schneider, Stéphane M. A1 - Sieber, Cornel A1 - Thiem, Ulrich A1 - Visser, Marjolein A1 - Wijnhoven, Hanneke A1 - Wirth, Rainer T1 - Management of malnutrition in older patients BT - Current approaches, evidence and open questions JF - Journal of Clinical Medicine : open access journal N2 - Malnutrition is widespread in older people and represents a major geriatric syndrome with multifactorial etiology and severe consequences for health outcomes and quality of life. The aim of the present paper is to describe current approaches and evidence regarding malnutrition treatment and to highlight relevant knowledge gaps that need to be addressed. Recently published guidelines of the European Society for Clinical Nutrition and Metabolism (ESPEN) provide a summary of the available evidence and highlight the wide range of different measures that can be taken—from the identification and elimination of potential causes to enteral and parenteral nutrition—depending on the patient’s abilities and needs. However, more than half of the recommendations therein are based on expert consensus because of a lack of evidence, and only three are concern patient-centred outcomes. Future research should further clarify the etiology of malnutrition and identify the most relevant causes in order to prevent malnutrition. Based on limited and partly conflicting evidence and the limitations of existing studies, it remains unclear which interventions are most effective in which patient groups, and if specific situations, diseases or etiologies of malnutrition require specific approaches. Patient-relevant outcomes such as functionality and quality of life need more attention, and research methodology should be harmonised to allow for the comparability of studies. KW - Geriatric patients KW - older persons KW - malnutrition KW - therapy KW - interventions Y1 - 2019 U6 - https://doi.org/10.3390/jcm8070974 SN - 2077-0383 VL - 8 IS - 7 PB - MDPI CY - Basel ER -