TY - JOUR A1 - Rosenbaum, Benjamin A1 - Raatz, Michael A1 - Weithoff, Guntram A1 - Fussmann, Gregor F. A1 - Gaedke, Ursula T1 - Estimating parameters from multiple time series of population dynamics using bayesian inference JF - Frontiers in ecology and evolution N2 - Empirical time series of interacting entities, e.g., species abundances, are highly useful to study ecological mechanisms. Mathematical models are valuable tools to further elucidate those mechanisms and underlying processes. However, obtaining an agreement between model predictions and experimental observations remains a demanding task. As models always abstract from reality one parameter often summarizes several properties. Parameter measurements are performed in additional experiments independent of the ones delivering the time series. Transferring these parameter values to different settings may result in incorrect parametrizations. On top of that, the properties of organisms and thus the respective parameter values may vary considerably. These issues limit the use of a priori model parametrizations. In this study, we present a method suited for a direct estimation of model parameters and their variability from experimental time series data. We combine numerical simulations of a continuous-time dynamical population model with Bayesian inference, using a hierarchical framework that allows for variability of individual parameters. The method is applied to a comprehensive set of time series from a laboratory predator-prey system that features both steady states and cyclic population dynamics. Our model predictions are able to reproduce both steady states and cyclic dynamics of the data. Additionally to the direct estimates of the parameter values, the Bayesian approach also provides their uncertainties. We found that fitting cyclic population dynamics, which contain more information on the process rates than steady states, yields more precise parameter estimates. We detected significant variability among parameters of different time series and identified the variation in the maximum growth rate of the prey as a source for the transition from steady states to cyclic dynamics. By lending more flexibility to the model, our approach facilitates parametrizations and shows more easily which patterns in time series can be explained also by simple models. Applying Bayesian inference and dynamical population models in conjunction may help to quantify the profound variability in organismal properties in nature. KW - Bayesian inference KW - chemostat experiments KW - ordinary differential equation KW - parameter estimation KW - population dynamics KW - predator prey KW - time series analysis KW - trait variability Y1 - 2019 U6 - https://doi.org/10.3389/fevo.2018.00234 SN - 2296-701X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Pennekamp, Frank A1 - Iles, Alison C. A1 - Garland, Joshua A1 - Brennan, Georgina A1 - Brose, Ulrich A1 - Gaedke, Ursula A1 - Jacob, Ute A1 - Kratina, Pavel A1 - Matthews, Blake A1 - Munch, Stephan A1 - Novak, Mark A1 - Palamara, Gian Marco A1 - Rall, Bjorn C. A1 - Rosenbaum, Benjamin A1 - Tabi, Andrea A1 - Ward, Colette A1 - Williams, Richard A1 - Ye, Hao A1 - Petchey, Owen L. T1 - The intrinsic predictability of ecological time series and its potential to guide forecasting JF - Ecological monographs : a publication of the Ecological Society of America. KW - empirical dynamic modelling KW - forecasting KW - information theory KW - permutation entropy KW - population dynamics KW - time series analysis Y1 - 2019 U6 - https://doi.org/10.1002/ecm.1359 SN - 0012-9615 SN - 1557-7015 VL - 89 IS - 2 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Raatz, Michael A1 - van Velzen, Ellen A1 - Gaedke, Ursula T1 - Co‐adaptation impacts the robustness of predator–prey dynamics against perturbations JF - Ecology and Evolution N2 - Global change threatens the maintenance of ecosystem functions that are shaped by the persistence and dynamics of populations. It has been shown that the persistence of species increases if they possess larger trait adaptability. Here, we investigate whether trait adaptability also affects the robustness of population dynamics of interacting species and thereby shapes the reliability of ecosystem functions that are driven by these dynamics. We model co‐adaptation in a predator–prey system as changes to predator offense and prey defense due to evolution or phenotypic plasticity. We investigate how trait adaptation affects the robustness of population dynamics against press perturbations to environmental parameters and against pulse perturbations targeting species abundances and their trait values. Robustness of population dynamics is characterized by resilience, elasticity, and resistance. In addition to employing established measures for resilience and elasticity against pulse perturbations (extinction probability and return time), we propose the warping distance as a new measure for resistance against press perturbations, which compares the shapes and amplitudes of pre‐ and post‐perturbation population dynamics. As expected, we find that the robustness of population dynamics depends on the speed of adaptation, but in nontrivial ways. Elasticity increases with speed of adaptation as the system returns more rapidly to the pre‐perturbation state. Resilience, in turn, is enhanced by intermediate speeds of adaptation, as here trait adaptation dampens biomass oscillations. The resistance of population dynamics strongly depends on the target of the press perturbation, preventing a simple relationship with the adaptation speed. In general, we find that low robustness often coincides with high amplitudes of population dynamics. Hence, amplitudes may indicate the robustness against perturbations also in other natural systems with similar dynamics. Our findings show that besides counteracting extinctions, trait adaptation indeed strongly affects the robustness of population dynamics against press and pulse perturbations. KW - disturbance KW - evolutionary rescue KW - population dynamics KW - stability KW - trait adaptation Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5006 SN - 2045-7758 VL - 9 IS - 7 SP - 3823 EP - 3836 PB - John Wiley & Sons CY - Hoboken, NJ ER -