TY - JOUR A1 - Shahnejat-Bushehri, Sara A1 - Allu, Annapurna Devi A1 - Mehterov, Nikolay A1 - Thirumalaikumar, Venkatesh P. A1 - Alseekh, Saleh A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Balazadeh, Salma T1 - Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato JF - Frontiers in plant science N2 - The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species. KW - Arabidopsis KW - tomato KW - fruit KW - growth KW - transcription factor KW - gibberellic acid KW - brassinosteroid KW - DELLA proteins Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.00214 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Shubchynskyy, Volodymyr A1 - Boniecka, Justyna A1 - Schweighofer, Alois A1 - Simulis, Justinas A1 - Kvederaviciute, Kotryna A1 - Stumpe, Michael A1 - Mauch, Felix A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Boutrot, Freddy A1 - Zipfel, Cyril A1 - Meskiene, Irute T1 - Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae JF - Journal of experimental botany N2 - Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance. KW - Callose KW - defense genes KW - MAPK KW - MAPK phosphatase KW - PAMP KW - PP2C phosphatase KW - Pseudomonas syringae KW - salicylic acid KW - transcription factors Y1 - 2017 U6 - https://doi.org/10.1093/jxb/erw485 SN - 0022-0957 SN - 1460-2431 VL - 68 IS - 5 SP - 1169 EP - 1183 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Machens, Fabian A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Messerschmidt, Katrin T1 - Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae N2 - Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs) and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs) with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 393 KW - JUB1 KW - chimeric transcription factors KW - dead Cas9 KW - gene expression KW - synthetic biology KW - synthetic circuits KW - transcriptional regulation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403804 ER - TY - JOUR A1 - Machens, Fabian A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Messerschmidt, Katrin T1 - Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae JF - Frontiers in Bioengineering and Biotechnology N2 - Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs) and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs) with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems. KW - JUB1 KW - synthetic biology KW - transcriptional regulation KW - gene expression KW - synthetic circuits KW - dead Cas9 KW - chimeric transcription factors Y1 - 2017 U6 - https://doi.org/10.3389/fbioe.2017.00063 SN - 2296-4185 VL - 5 SP - 1 EP - 11 PB - Frontiers CY - Lausanne ER -