TY - JOUR A1 - Rancan, Fiorenza A1 - Volkmann, Hildburg A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Stanko, Jessica Isolde A1 - Kleuser, Burkhard A1 - Blume-Peytavi, Ulrike A1 - Calderon, Marcelo A1 - Vogt, Annika T1 - Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels JF - Pharmaceutics : Molecular Diversity Preservation International N2 - Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions. KW - tacrolimus formulation KW - nanogels KW - skin penetration KW - drug delivery KW - human excised skin KW - Jurkat cells Y1 - 2019 U6 - https://doi.org/10.3390/pharmaceutics11080394 SN - 1999-4923 VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Eichelmann, Fabian A1 - Sellem, Laury A1 - Wittenbecher, Clemens A1 - Jäger, Susanne A1 - Kuxhaus, Olga A1 - Prada, Marcela A1 - Cuadrat, Rafael A1 - Jackson, Kim G. A1 - Lovegrove, Julie A. A1 - Schulze, Matthias Bernd T1 - Deep lipidomics in human plasma: cardiometabolic disease risk and effect of dietary fat modulation JF - Circulation N2 - Background: In blood and tissues, dietary and endogenously generated fatty acids (FAs) occur in free form or as part of complex lipid molecules that collectively represent the lipidome of the respective tissue. We assessed associations of plasma lipids derived from high-resolution lipidomics with incident cardiometabolic diseases and subsequently tested if the identified risk-associated lipids were sensitive to dietary fat modification. Methods: The EPIC Potsdam cohort study (European Prospective Investigation into Cancer and Nutrition) comprises 27 548 participants recruited within an age range of 35 to 65 years from the general population around Potsdam, Germany. We generated 2 disease-specific case cohorts on the basis of a fixed random subsample (n=1262) and all respective cohort-wide identified incident primary cardiovascular disease (composite of fatal and nonfatal myocardial infarction and stroke; n=551) and type 2 diabetes (n=775) cases. We estimated the associations of baseline plasma concentrations of 282 class-specific FA abundances (calculated from 940 distinct molecular species across 15 lipid classes) with the outcomes in multivariable-adjusted Cox models. We tested the effect of an isoenergetic dietary fat modification on risk-associated lipids in the DIVAS randomized controlled trial (Dietary Intervention and Vascular Function; n=113). Participants consumed either a diet rich in saturated FAs (control), monounsaturated FAs, or a mixture of monounsaturated and n-6 polyunsaturated FAs for 16 weeks. Results: Sixty-nine lipids associated (false discovery rate<0.05) with at least 1 outcome (both, 8; only cardiovascular disease, 49; only type 2 diabetes, 12). In brief, several monoacylglycerols and FA16:0 and FA18:0 in diacylglycerols were associated with both outcomes; cholesteryl esters, free fatty acids, and sphingolipids were largely cardiovascular disease specific; and several (glycero)phospholipids were type 2 diabetes specific. In addition, 19 risk-associated lipids were affected (false discovery rate<0.05) by the diets rich in unsaturated dietary FAs compared with the saturated fat diet (17 in a direction consistent with a potential beneficial effect on long-term cardiometabolic risk). For example, the monounsaturated FA-rich diet decreased diacylglycerol(FA16:0) by 0.4 (95% CI, 0.5-0.3) SD units and increased triacylglycerol(FA22:1) by 0.5 (95% CI, 0.4-0.7) SD units. Conclusions: We identified several lipids associated with cardiometabolic disease risk. A subset was beneficially altered by a dietary fat intervention that supports the substitution of dietary saturated FAs with unsaturated FAs as a potential tool for primary disease prevention. KW - cardiovascular diseases KW - cholesterol KW - diabetes mellitus KW - type 2 KW - diet KW - food KW - and nutrition KW - epidemiology KW - lipids Y1 - 2022 U6 - https://doi.org/10.1161/CIRCULATIONAHA.121.056805 SN - 0009-7322 SN - 1524-4539 VL - 146 IS - 1 SP - 21 EP - 35 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Kluth, Oliver A1 - Stadion, Mandy A1 - Gottmann, Pascal A1 - Aga-Barfknecht, Heja A1 - Jähnert, Markus A1 - Scherneck, Stephan A1 - Vogel, Heike A1 - Krus, Ulrika A1 - Seelig, Anett A1 - Ling, Charlotte A1 - Gerdes, Jantje A1 - Schürmann, Annette T1 - Decreased expression of cilia genes in pancreatic islets as a risk factor for type 2 diabetes in mice and humans JF - Cell reports N2 - An insufficient adaptive beta-cell compensation is a hallmark of type 2 diabetes (T2D). Primary cilia function as versatile sensory antennae regulating various cellular processes, but their role on compensatory beta-cell replication has not been examined. Here, we identify a significant enrichment of downregulated, cilia-annotated genes in pancreatic islets of diabetes-prone NZO mice as compared with diabetes-resistant B6-ob/ob mice. Among 327 differentially expressed mouse cilia genes, 81 human orthologs are also affected in islets of diabetic donors. Islets of nondiabetic mice and humans show a substantial overlap of upregulated cilia genes that are linked to cell-cycle progression. The shRNA-mediated suppression of KIF3A, essential for ciliogenesis, impairs division of MINE beta cells as well as in dispersed primary mouse and human islet cells, as shown by decreased BrdU incorporation. These findings demonstrate the substantial role of cilia-gene regulation on islet function and T2D risk. Y1 - 2019 U6 - https://doi.org/10.1016/j.celrep.2019.02.056 SN - 2211-1247 VL - 26 IS - 11 SP - 3027 EP - 3036 PB - Cell Press CY - Maryland Heights ER - TY - JOUR A1 - Frombach, Janna A1 - Unbehauen, Michael A1 - Kurniasih, Indah N. A1 - Schumacher, Fabian A1 - Volz, Pierre A1 - Hadam, Sabrina A1 - Rancan, Fiorenza A1 - Blume-Peytavi, Ulrike A1 - Kleuser, Burkhard A1 - Haag, Rainer A1 - Alexiev, Ulrike A1 - Vogt, Annika T1 - Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin JF - Journal of controlled release N2 - In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial. KW - Drug delivery KW - Skin penetration KW - Cellular uptake KW - Nanoparticles KW - Dendritic cells KW - High resolution microscopy Y1 - 2019 U6 - https://doi.org/10.1016/j.jconrel.2019.02.028 SN - 0168-3659 SN - 1873-4995 VL - 299 SP - 138 EP - 148 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Witt, Barbara A1 - Stiboller, Michael A1 - Raschke, Stefanie A1 - Friese, Sharleen A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers JF - Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS N2 - Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases. KW - Copper KW - Astrocytes KW - Toxicity KW - Mitochondria KW - ROS KW - Trace elements Y1 - 2021 U6 - https://doi.org/10.1016/j.jtemb.2021.126711 SN - 1878-3252 VL - 65 PB - Elsevier CY - München ER - TY - JOUR A1 - Naser, Eyad A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Mohamed, Zainelabdeen H. A1 - Kappe, Christian A1 - Hessler, Gabriele A1 - Pollmeier, Barbara A1 - Kleuser, Burkhard A1 - Arenz, Christoph A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Characterization of the small molecule ARC39 BT - a direct and specific inhibitor of acid sphingomyelinase in vitro[S] JF - Journal of Lipid Research N2 - Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo. KW - sphingolipids KW - sphingomyelin KW - cerami-des KW - lipid metabolism KW - enzymology KW - lysosome KW - lysosomal hydrolases KW - acid ceramidase KW - bisphosphonates KW - functional inhibitors of acid sphin-gomyelinase KW - 1-aminodecylidene bis-phosphonic acid Y1 - 2021 U6 - https://doi.org/10.1194/jlr.RA120000682 SN - 1539-7262 SN - 0022-2275 VL - 61 IS - 6 SP - 896 EP - 910 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Wardelmann, Kristina A1 - Rath, Michaela A1 - Castro, José Pedro A1 - Blümel, Sabine A1 - Schell, Mareike A1 - Hauffe, Robert A1 - Schumacher, Fabian A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Wernitz, Andreas A1 - Hosoi, Toru A1 - Ozawa, Koichiro A1 - Kleuser, Burkhard A1 - Weiß, Jürgen A1 - Schürmann, Annette A1 - Kleinridders, André T1 - Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus JF - Antioxidants N2 - Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance. KW - brain insulin signaling KW - mitochondria KW - oxidative stress KW - fatty acid metabolism Y1 - 2021 U6 - https://doi.org/10.3390/antiox10050711 SN - 2076-3921 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Klopsch, Rebecca A1 - Baldermann, Susanne A1 - Hanschen, Franziska S. A1 - Voss, Alexander A1 - Rohn, Sascha A1 - Schreiner, Monika A1 - Neugart, Susanne T1 - Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale JF - Food chemistry N2 - Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread. KW - Ontogeny KW - Brassica KW - Glucosinolate breakdown product KW - Flavonoid KW - Carotenoid KW - Thermal processing Y1 - 2019 U6 - https://doi.org/10.1016/j.foodchem.2019.05.113 SN - 0308-8146 SN - 1873-7072 VL - 295 SP - 412 EP - 422 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Duydu, Yalcin A1 - Basaran, Nursen A1 - Yalcin, Can Özgür A1 - Ustundag, Aylin A1 - Aydin, Sevtap A1 - Anlar, Hatice Gul A1 - Bacanli, Merve A1 - Aydos, Kaan A1 - Atabekoglu, Cem Somer A1 - Golka, Klaus A1 - Ickstadt, Katja A1 - Schwerdtle, Tanja A1 - Werner, Matthias A1 - Bolt, Hermann M. T1 - Boron-exposed male workers in Turkey BT - no change in sperm Y:X chromosome ratio and in offspring's sex ratio JF - Archives of toxicology : official journal of EUROTOX N2 - Boron-associated shifts in sex ratios at birth were suggested earlier and attributed to a decrease in Y- vs. X-bearing sperm cells. As the matter is pivotal in the discussion of reproductive toxicity of boron/borates, re-investigation in a highly borate-exposed population was required. In the present study, 304 male workers in Bandirma and Bigadic (Turkey) with different degrees of occupational and environmental exposure to boron were investigated. Boron was quantified in blood, urine and semen, and the persons were allocated to exposure groups along B blood levels. In the highest ("extreme") exposure group (n = 69), calculated mean daily boron exposures, semen boron and blood boron concentrations were 44.91 +/- 18.32 mg B/day, 1643.23 +/- 965.44 ng B/g semen and 553.83 +/- 149.52 ng B/g blood, respectively. Overall, an association between boron exposure and Y:X sperm ratios in semen was not statistically significant (p > 0.05). Also, the mean Y:X sperm ratios in semen samples of workers allocated to the different exposure groups were statistically not different in pairwise comparisons (p > 0.05). Additionally, a boron-associated shift in sex ratio at birth towards female offspring was not visible. In essence, the present results do not support an association between boron exposure and decreased Y:X sperm ratio in males, even under extreme boron exposure conditions. KW - Paternal exposure KW - Boron exposure KW - Y:X chromosome ratio KW - Sex ratio at birth Y1 - 2019 U6 - https://doi.org/10.1007/s00204-019-02391-z SN - 0340-5761 SN - 1432-0738 VL - 93 IS - 3 SP - 743 EP - 751 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Dwi Putra, Sulistyo Emantoko A1 - Reichetzeder, Christoph A1 - Hasan, Ahmed Abdallah Abdalrahman Mohamed A1 - Slowinski, Torsten A1 - Chu, Chang A1 - Krämer, Bernhard K. A1 - Kleuser, Burkhard A1 - Hocher, Berthold T1 - Being born large for gestational age is associated with increased global placental DNA methylation JF - Scientific Reports N2 - Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001). KW - fetal origins hypothesis KW - birth weight KW - repetitive elements KW - glucocorticoid receptor KW - nutrient transport KW - growth restriction KW - later health KW - pregnancy KW - genes KW - patterns Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-57725-0 SN - 2045-2322 VL - 10 IS - 1 SP - 1 EP - 10 PB - Springer Nature CY - London ER -