TY - THES A1 - Trautmann, Tina T1 - Understanding global water storage variations using model-data integration T1 - Verständnis der Variabilität globaler Wasserspeicher mittels Modell-Daten Integration N2 - Climate change is one of the greatest challenges to humanity in this century, and most noticeable consequences are expected to be impacts on the water cycle – in particular the distribution and availability of water, which is fundamental for all life on Earth. In this context, it is essential to better understand where and when water is available and what processes influence variations in water storages. While estimates of the overall terrestrial water storage (TWS) variations are available from the GRACE satellites, these represent the vertically integrated signal over all water stored in ice, snow, soil moisture, groundwater and surface water bodies. Therefore, complementary observational data and hydrological models are still required to determine the partitioning of the measured signal among different water storages and to understand the underlying processes. However, the application of large-scale observational data is limited by their specific uncertainties and the incapacity to measure certain water fluxes and storages. Hydrological models, on the other hand, vary widely in their structure and process-representation, and rarely incorporate additional observational data to minimize uncertainties that arise from their simplified representation of the complex hydrologic cycle. In this context, this thesis aims to contribute to improving the understanding of global water storage variability by combining simple hydrological models with a variety of complementary Earth observation-based data. To this end, a model-data integration approach is developed, in which the parameters of a parsimonious hydrological model are calibrated against several observational constraints, inducing GRACE TWS, simultaneously, while taking into account each data’s specific strengths and uncertainties. This approach is used to investigate 3 specific aspects that are relevant for modelling and understanding the composition of large-scale TWS variations. The first study focusses on Northern latitudes, where snow and cold-region processes define the hydrological cycle. While the study confirms previous findings that seasonal dynamics of TWS are dominated by the cyclic accumulation and melt of snow, it reveals that inter-annual TWS variations on the contrary, are determined by variations in liquid water storages. Additionally, it is found to be important to consider the impact of compensatory effects of spatially heterogeneous hydrological variables when aggregating the contribution of different storage components over large areas. Hence, the determinants of TWS variations are scale-dependent and underlying driving mechanism cannot be simply transferred between spatial and temporal scales. These findings are supported by the second study for the global land areas beyond the Northern latitudes as well. This second study further identifies the considerable impact of how vegetation is represented in hydrological models on the partitioning of TWS variations. Using spatio-temporal varying fields of Earth observation-based data to parameterize vegetation activity not only significantly improves model performance, but also reduces parameter equifinality and process uncertainties. Moreover, the representation of vegetation drastically changes the contribution of different water storages to overall TWS variability, emphasizing the key role of vegetation for water allocation, especially between sub-surface and delayed water storages. However, the study also identifies parameter equifinality regarding the decay of sub-surface and delayed water storages by either evapotranspiration or runoff, and thus emphasizes the need for further constraints hereof. The third study focuses on the role of river water storage, in particular whether it is necessary to include computationally expensive river routing for model calibration and validation against the integrated GRACE TWS. The results suggest that river routing is not required for model calibration in such a global model-data integration approach, due to the larger influence other observational constraints, and the determinability of certain model parameters and associated processes are identified as issues of greater relevance. In contrast to model calibration, considering river water storage derived from routing schemes can already significantly improve modelled TWS compared to GRACE observations, and thus should be considered for model evaluation against GRACE data. Beyond these specific findings that contribute to improved understanding and modelling of large-scale TWS variations, this thesis demonstrates the potential of combining simple modeling approaches with diverse Earth observational data to improve model simulations, overcome inconsistencies of different observational data sets, and identify areas that require further research. These findings encourage future efforts to take advantage of the increasing number of diverse global observational data. N2 - Der Klimawandel stellt mit Abstand eine der größten Herausforderungen für die Menschheit in diesem Jahrhundert da, und die spürbarsten Folgen werden voraussichtlich die Auswirkungen auf den Wasserkreislauf sein - insbesondere auf die Verteilung und Verfügbarkeit von Wasser, welches Grundlage allen Lebens dieser Erde ist. In diesem Zusammenhang ist es von entscheidender Bedeutung, besser zu verstehen, wo und wann Wasser verfügbar ist und welche Prozesse natürliche Schwankungen der Wasserspeicher beeinflussen. Obwohl Schätzungen der Gesamtschwankungen der terrestrischen Wasserspeicher (TWS) basierend auf Daten der GRACE-Satelliten vorliegen, stellen diese nur das vertikal integrierte Signal über alles in Eis, Schnee, Bodenfeuchtigkeit, Grundwasser und Oberflächengewässern gespeicherte Wasser dar. Daher sind ergänzende Beobachtungsdaten und hydrologische Modelle notwendig, um die Aufteilung des gemessenen Signals auf verschiedenen Wasserspeicher zu bestimmen und die zugrunde liegenden Prozesse zu verstehen. Die Verwendung von großmaßstäblichen Beobachtungsdaten ist jedoch durch ihre spezifischen Unsicherheiten und die Unfähigkeit, bestimmte Wasserflüsse und -speicher zu messen, eingeschränkt. Hydrologische Modelle hingegen unterscheiden sich stark in ihrer Struktur und Prozessdarstellung und beziehen nur selten zusätzliche Beobachtungsdaten ein, um Unsicherheiten zu minimieren, die sich aus ihrer vereinfachten Darstellung des komplexen Wasserkreislaufs ergeben. In diesem Zusammenhang gibt diese Arbeit einen Beitrag zum besseren Verständnis der Schwankungen globaler Wasserspeicher, indem einfache hydrologische Modelle mit einer Vielzahl sich ergänzender Erdbeobachtungsdaten kombiniert werden. Dafür wird ein Ansatz zur Integration von Modellen und Daten entwickelt, bei dem die Parameter eines einfachen hydrologischen Modells gleichzeitig gegen mehrere Beobachtungsdaten, inklusive GRACE TWS, kalibriert werden, wobei deren spezifischen Stärken und Unsicherheiten berücksichtigt werden. Dieser Ansatz wird genutzt, um drei spezifische Aspekte, die für die Modellierung und das Verständnis der Zusammensetzung großskaliger TWS-Schwankungen relevant sind, zu untersuchen. Die erste Studie konzentriert sich auf die nördlichen Breiten, wo Schnee und Prozesse kalter Regionen den hydrologischen Kreislauf bestimmen. Während die Studie frühere Erkenntnisse darin bestätigt, dass die saisonale Dynamik des TWS von der zyklischen Akkumulation und Schmelze von Schnee dominiert wird, zeigt sie, dass die zwischenjährlichen TWS-Schwankungen im Gegenteil durch Variationen der Flüssigwasserspeicher bestimmt werden. Darüber hinaus wird festgestellt, dass es wichtig ist, die Auswirkungen kompensatorischer Effekte räumlich heterogener hydrologischer Variablen zu berücksichtigen, wenn der Beitrag verschiedener Speicherkomponenten über große Gebiete aggregiert wird. Die Determinanten der TWS-Schwankungen sind skalenabhängig, und die zugrunde liegenden Antriebsmechanismen lassen sich nicht einfach zwischen räumlichen und zeitlichen Skalen übertragen. Diese Ergebnisse werden durch die zweite Studie auch auf globaler Skale bestätigt. Diese zweite Studie zeigt außerdem, dass die Art und Weise, wie Vegetation in hydrologischen Modellen dargestellt wird, einen erheblichen Einfluss auf die Aufteilung der TWS-Variationen hat. Die Verwendung von raum-zeitlich variierenden Erdbeobachtungsdaten zur Parametrisierung der Vegetationsaktivität verbessert nicht nur die Modellleistung erheblich, sondern verringert auch die Parameterequifinalität und somit die Prozessunsicherheiten. Darüber hinaus beeinflusst die Repräsentation der Vegetation drastisch den Einfluss verschiedener Wasserspeicher zur Gesamtvariabilität des TWS und unterstreicht damit die Schlüsselrolle der Vegetation für die Wasserverteilung, insbesondere zwischen unterirdischen und verzögerten Wasserspeichern. Die Studie zeigt jedoch auch, dass die Parameter für den Verringerung der unterirdischen und verzögerten Wasserspeichern, entweder via Evapotranspiration oder via Abfluss, äquivalent sind, und unterstreicht damit die Notwendigkeit weiterer Eingrenzung durch Beobachtungsdaten. Die dritte Studie befasst sich mit der Rolle der Wasserspeicherung in Flüssen, insbesondere mit der Frage, ob es notwendig ist, das rechenintensive Abfluss-Routing für die Kalibrierung und Validierung des Modells gegen GRACE TWS Daten zu berücksichtigen. Die Ergebnisse deuten darauf hin, dass das Abfluss-Routing für die Modellkalibrierung in einem solchen globalen Modell-Daten-Integrationsansatz nicht erforderlich ist, da andere Beobachtungsdaten einen größeren Einfluss haben und die Definierbarkeit bestimmter Modellparameter und damit zusammenhängender Prozesse relevantere Probleme darstellen. Im Gegensatz zur Modellkalibrierung kann die Berücksichtigung von Flusswasserspeichern jedoch den modellierten TWS im Vergleich zu GRACE-Beobachtungen bereits erheblich verbessern und sollte daher bei der Modellevaluierung gegen GRACE-Daten berücksichtigt werden. Über diese spezifischen Ergebnisse hinaus, die zum besseren Verständnis und Modellierung großskaliger TWS-Variationen beitragen, zeigt diese Arbeit das Potenzial der Kombination einfacher Modellierungsansätze mit verschiedenen Erdbeobachtungsdaten zur Verbesserung von Modellsimulationen, zur Überwindung von Inkonsistenzen zwischen verschiedenen Beobachtungsdatensätzen und zur Identifizierung von Themen, die weitere Forschung erfordern. Diese Ergebnisse ermutigen künftige Forschungen, die zunehmende Zahl unterschiedlicher globaler Beobachtungsdaten zu nutzen. KW - global hydrological modeling KW - model-data integration KW - terrestrial water storage variation KW - model calibration KW - globale hydrologische Modellierung KW - Modellkalibrierung KW - Model-Daten Integration KW - Variationen terrestrischer Wasserspeicher Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-565954 ER - TY - THES A1 - Fischer, Melanie T1 - Outburst floods in the Greater Himalayas T1 - Dammbruchfluten in der Großregion des Himalayas BT - from regional susceptibility to local hazard BT - von regionaler Suszeptibilität zu lokaler Gefährdung N2 - High-mountain regions provide valuable ecosystem services, including food, water, and energy production, to more than 900 million people worldwide. Projections hold, that this population number will rapidly increase in the next decades, accompanied by a continued urbanisation of cities located in mountain valleys. One of the manifestations of this ongoing socio-economic change of mountain societies is a rise in settlement areas and transportation infrastructure while an increased power need fuels the construction of hydropower plants along rivers in the high-mountain regions of the world. However, physical processes governing the cryosphere of these regions are highly sensitive to changes in climate and a global warming will likely alter the conditions in the headwaters of high-mountain rivers. One of the potential implications of this change is an increase in frequency and magnitude of outburst floods – highly dynamic flows capable of carrying large amounts of water and sediments. Sudden outbursts from lakes formed behind natural dams are complex geomorphological processes and are often part of a hazard cascade. In contrast to other types of natural hazards in high-alpine areas, for example landslides or avalanches, outburst floods are highly infrequent. Therefore, observations and data describing for example the mode of outburst or the hydraulic properties of the downstream propagating flow are very limited, which is a major challenge in contemporary (glacial) lake outburst flood research. Although glacial lake outburst floods (GLOFs) and landslide-dammed lake outburst floods (LLOFs) are rare, a number of documented events caused high fatality counts and damage. The highest documented losses due to outburst floods since the start of the 20th century were induced by only a few high-discharge events. Thus, outburst floods can be a significant hazard to downvalley communities and infrastructure in high-mountain regions worldwide. This thesis focuses on the Greater Himalayan region, a vast mountain belt stretching across 0.89 million km2. Although potentially hundreds of outburst floods have occurred there since the beginning of the 20th century, data on these events is still scarce. Projections of cryospheric change, including glacier-mass wastage and permafrost degradation, will likely result in an overall increase of the water volume stored in meltwater lakes as well as the destabilisation of mountain slopes in the Greater Himalayan region. Thus, the potential for outburst floods to affect the increasingly more densely populated valleys of this mountain belt is also likely to increase in the future. A prime example of one of these valleys is the Pokhara valley in Nepal, which is drained by the Seti Khola, a river crossing one of the steepest topographic gradients in the Himalayas. This valley is also home to Nepal’s second largest, rapidly growing city, Pokhara, which currently has a population of more than half a million people – some of which live in informal settlements within the floodplain of the Seti Khola. Although there is ample evidence for past outburst floods along this river in recent and historic times, these events have hardly been quantified. The main motivation of my thesis is to address the data scarcity on past and potential future outburst floods in the Greater Himalayan region, both at a regional and at a local scale. For the former, I compiled an inventory of >3,000 moraine-dammed lakes, of which about 1% had a documented sudden failure in the past four decades. I used this data to test whether a number of predictors that have been widely applied in previous GLOF assessments are statistically relevant when estimating past GLOF susceptibility. For this, I set up four Bayesian multi-level logistic regression models, in which I explored the credibility of the predictors lake area, lake-area dynamics, lake elevation, parent-glacier-mass balance, and monsoonality. By using a hierarchical approach consisting of two levels, this probabilistic framework also allowed for spatial variability on GLOF susceptibility across the vast study area, which until now had not been considered in studies of this scale. The model results suggest that in the Nyainqentanglha and Eastern Himalayas – regions with strong negative glacier-mass balances – lakes have been more prone to release GLOFs than in regions with less negative or even stable glacier-mass balances. Similarly, larger lakes in larger catchments had, on average, a higher probability to have had a GLOF in the past four decades. Yet, monsoonality, lake elevation, and lake-area dynamics were more ambiguous. This challenges the credibility of a lake’s rapid growth in surface area as an indicator of a pending outburst; a metric that has been applied to regional GLOF assessments worldwide. At a local scale, my thesis aims to overcome data scarcity concerning the flow characteristics of the catastrophic May 2012 flood along the Seti Khola, which caused 72 fatalities, as well as potentially much larger predecessors, which deposited >1 km³ of sediment in the Pokhara valley between the 12th and 14th century CE. To reconstruct peak discharges, flow depths, and flow velocities of the 2012 flood, I mapped the extents of flood sediments from RapidEye satellite imagery and used these as a proxy for inundation limits. To constrain the latter for the Mediaeval events, I utilised outcrops of slackwater deposits in the fills of tributary valleys. Using steady-state hydrodynamic modelling for a wide range of plausible scenarios, from meteorological (1,000 m³ s-1) to cataclysmic outburst floods (600,000 m³ s-1), I assessed the likely initial discharges of the recent and the Mediaeval floods based on the lowest mismatch between sedimentary evidence and simulated flood limits. One-dimensional HEC-RAS simulations suggest, that the 2012 flood most likely had a peak discharge of 3,700 m³ s-1 in the upper Seti Khola and attenuated to 500 m³ s-1 when arriving in Pokhara’s suburbs some 15 km downstream. Simulations of flow in two-dimensions with orders of magnitude higher peak discharges in ANUGA show extensive backwater effects in the main tributary valleys. These backwater effects match the locations of slackwater deposits and, hence, attest for the flood character of Mediaeval sediment pulses. This thesis provides first quantitative proof for the hypothesis, that the latter were linked to earthquake-triggered outbursts of large former lakes in the headwaters of the Seti Khola – producing floods with peak discharges of >50,000 m³ s-1. Building on this improved understanding of past floods along the Seti Khola, my thesis continues with an analysis of the impacts of potential future outburst floods on land cover, including built-up areas and infrastructure mapped from high-resolution satellite and OpenStreetMap data. HEC-RAS simulations of ten flood scenarios, with peak discharges ranging from 1,000 to 10,000 m³ s-1, show that the relative inundation hazard is highest in Pokhara’s north-western suburbs. There, the potential effects of hydraulic ponding upstream of narrow gorges might locally sustain higher flow depths. Yet, along this reach, informal settlements and gravel mining activities are close to the active channel. By tracing the construction dynamics in two of these potentially affected informal settlements on multi-temporal RapidEye, PlanetScope, and Google Earth imagery, I found that exposure increased locally between three- to twentyfold in just over a decade (2008 to 2021). In conclusion, this thesis provides new quantitative insights into the past controls on the susceptibility of glacial lakes to sudden outburst at a regional scale and the flow dynamics of propagating flood waves released by past events at a local scale, which can aid future hazard assessments on transient scales in the Greater Himalayan region. My subsequent exploration of the impacts of potential future outburst floods to exposed infrastructure and (informal) settlements might provide valuable inputs to anticipatory assessments of multiple risks in the Pokhara valley. N2 - Hochgebirgsregionen stellen wertvolle Ökosystemdienstleistungen wie Nahrung, Wasser und Energieerzeugung für weltweit mehr als 900 Millionen Menschen bereit. Prognosen zufolge wird diese Zahl in den nächsten Jahrzehnten weiter rapide ansteigen, begleitet von einer zunehmenden Urbanisierung der in den Bergtälern lebenden Bevölkerung. Dieser anhaltende sozioökonomische Wandel äußert sich unter anderem in der Zunahme von Siedlungsflächen und dem Ausbau der Verkehrsinfrastruktur, während gleichzeitig ein erhöhter Energiebedarf den Bau von Wasserkraftwerken entlang von Hochgebirgsflüssen vorantreibt. Physikalische Prozesse, welche die Hochgebirgs-Kryosphäre beeinflussen, reagieren jedoch sehr empfindlich auf Klimaveränderungen. Die globale Erwärmung wird somit wahrscheinlich auch die Bedingungen in den Einzugsgebieten und Oberläufen dieser Hochgebirgsflüsse verändern. Eine mögliche Folge dieses Wandels ist eine Zunahme der Frequenz und Magnitude von natürlichen Dammbruchfluten (im Englischen outburst floods), welche hochdynamisch sind und potenziell große Mengen Wasser und Sedimente mit sich führen können. Plötzliche Ausbrüche von Seen, welche sich zuvor hinter natürlichen Dämmen aufgestaut haben, sind komplexe geomorphologische Prozesse und oft Teil einer mehrteiligen Gefahrenkaskade. Dammbruchfluten sind jedoch, im Gegensatz zu anderen Naturgefahren im Hochgebirge wie beispielsweise Erdrutsche oder Lawinen, sehr selten. Daher sind direkte Beobachtungen und Messdaten, welche z.B. die Art des Ausbruchs oder die hydraulischen Eigenschaften der sich stromabwärts ausbreitenden Strömung festhalten, nur sehr begrenzt vorhanden, was eine der größten Herausforderungen für die gegenwärtige Forschung an natürlichen Dammbruchfluten darstellt. Trotz der Seltenheit von Ausbrüchen von Gletscherseen (glacial lake outburst floods oder GLOFs) beziehungsweise von durch Erdrutschmassen aufgestauten Seen (landslide-dammed lake outburst floods oder LLOFs), ist dieser Fluttyp für eine hohe Anzahl an dokumentierten Opferzahlen und Schäden weltweit verantwortlich. Ein Großteil dieser Schäden wurde dabei nach Aufzeichnungen seit Beginn des 20. Jahrhunderts durch nur wenige Ereignisse verursacht. Natürliche Dammbruchfluten stellen somit eine ernsthafte Gefahr für weiter talabwärts gelegene Siedlungen und die Infrastruktur in den Hochgebirgsregionen der Welt dar. Die vorliegende Dissertation fokussiert sich räumlich auf den Himalaya und die angrenzenden Gebirgszüge – die sogenannte Großregion des Himalayas – welche sich über eine Fläche von 0.89 Millionen km² erstreckt. Obwohl sich in diesem Gebirgsgürtel seit Beginn des 20. Jahrhunderts möglicherweise Hunderte natürlicher Dammbruchfluten ereignet haben, liegen nur wenige Daten über derartige Ereignisse vor. Aktuelle Prognosen der Veränderungen der Kryosphäre in diesem Gebiet zeigen einen zunehmenden Verlust an Gletschermasse und das Abtauen von Permafrostböden, was wahrscheinlich wiederum zu einem allgemeinen Anstieg des in den Gletscherseen gespeicherten Wasservolumens sowie zur Destabilisierung der Berghänge in der Großregion des Himalayas führen wird. In Zukunft ist somit auch eine Zunahme des Potenzials für solche Überschwemmungen in den zunehmend dichter besiedelten Tälern dieses Gebirgsgürtels wahrscheinlich. Ein Paradebeispiel eines solchen gefährdeten Himalaya-Tals ist das Pokhara Tal in Nepal, welches vom Seti Khola („Khola“ heißt auf Nepalesisch Fluss) entwässert wird, dem Hochgebirgsfluss mit dem steilsten topographischen Gefälle im zentralen Himalaya. Das Pokhara Tal beherbergt die gleichnamige Stadt Pokhara, welche mit einer Einwohnerzahl von über 500.000 die zweitgrößte und am schnellsten wachsende Stadt Nepals darstellt. Ein Teil der Einwohner Pokharas lebt in informellen Siedlungen, welche sich oftmals direkt im Überschwemmungsgebiet des Seti Khola befinden. Trotz zahlreicher Hinweise auf frühere natürliche Dammbruchfluten entlang dieses Flusses aus jüngerer und historischer Zeit, wurden diese Ereignisse bisher kaum quantifiziert. Die Hauptmotivation meiner Dissertation besteht darin, den Mangel an Daten über vergangene und potenzielle zukünftige natürliche Dammbruchfluten in der Großregion des Himalayas zu überwinden, sowohl auf regionaler als auch auf lokaler Ebene. Zu diesem Zweck habe ich ein Inventar von mehr als 3.000 hinter Moränen aufgestauten Gletscherseen erstellt, von welchen etwa 1% in den letzten vier Jahrzehnten einen dokumentierten GLOF produziert haben. Auf dieser Datengrundlage testete ich, ob eine Reihe von Prädiktoren, die in bisherigen GLOF-Studien häufig verwendet wurden, statistisch relevant für die Abschätzung der Suszeptibilität von moränengedämmten Gletscherseen für GLOFs in der Vergangenheit sind. Zu diesem Zweck habe ich vier Bayesische hierarchische logistische Regressionsmodelle aufgestellt, mit welchen ich die Glaubwürdigkeit der Prädiktoren Seefläche, Seeflächendynamik, Seehöhe über dem Meeresspiegel, Gletschermassenbilanz und „Monsunalität“ (definiert als der Anteil des während der Sommermonate fallenden Niederschlages am Jahresniederschlag) untersuchen konnte. Die Anwendung eines hierarchischen Ansatzes mit zwei Ebenen ermöglichte dabei die Berücksichtigung einer möglichen räumlichen Variabilität der GLOF-Suszeptibilität im Untersuchungsgebiet, was in bisherigen Studien dieser Größenordnung bislang nicht berücksichtigt worden ist. Die Modellergebnisse deuten darauf hin, dass Gletscherseen im Nyainqentanglha und im östlichen Himalaya, also Regionen mit stark negativen Gletschermassenbilanzen, eine höhere Suszeptibilität für GLOFs hatten als Gletscherseen in Regionen mit weniger stark negativen oder stabilen Gletschermassenbilanzen. Größere Gletscherseen in größeren Einzugsgebieten zeigten durchschnittlich ebenfalls eine höhere Wahrscheinlichkeit für einen nachgewiesenen GLOF in den letzten vier Jahrzehnten. Ein Einfluss der Monsunalität, der Höhe des Sees über dem Meeresspiegel sowie der Dynamik der Seefläche waren jedoch uneindeutig in den Modellen. Dieses Ergebnis stellt die Gültigkeit eines raschen Seewachstums als Indikator eines bevorstehenden GLOFs, ein in regionalen GLOF-Studien häufig angewandter Prädiktor, in Frage. Auf lokaler Ebene kann meine Dissertation dabei helfen, die Datenknappheit bezüglich der Fließcharakteristika der katastrophalen Flut vom Mai 2012 mit 72 Opfern entlang des Seti Khola sowie deren potenziell viel größeren Vorgängerereignissen des 12. bis 14. Jahrhunderts, welche >1 km³ an Sedimenten deponierten, zu überwinden. Um Spitzenabflüsse, Fließtiefen und Fließgeschwindigkeiten der 2012 Flut zu rekonstruieren, habe ich die Erstreckung der Flutsedimente aus RapidEye-Satellitenbildern kartiert und diese als Proxy für die Grenzen der Überflutungsflächen verwendet. Um letztere auch für die mittelalterlichen Ereignisse einzuschätzen, nutzte ich die Aufschlüsse von Stauwasserablagerungen (slackwater deposits) in den Talverfüllungen der Tributäre des Seti Kholas. Mit Hilfe stationärer hydrodynamischer Modelle simulierte ich eine breite Palette plausibler Fließszenarien, von meteorologischen Fluten (1.000 m³ s-1) bis hin zu kataklystischen Ausbrüchen (600.000 m³ s-1). Die Abschätzung der wahrscheinlichen anfänglichen Spitzenabflüsse der rezenten und mittelalterlichen Überschwemmungen geschah dabei auf der Grundlage der geringsten räumlichen Diskrepanz zwischen den sedimentären Beweisen und den simulierten Überflutungsgrenzen. Meine eindimensionalen Flutsimulationen mit der Modellierungssoftware HEC-RAS ergaben, dass die Flut von 2012 höchstwahrscheinlich einen Spitzenabfluss von 3.700 m³ s-1 im oberen Abschnitt des Seti Khola aufwies, sich jedoch beim Erreichen der etwa 15 km flussabwärts gelegenen Randbereiche Pokharas bereits auf 500 m³ s-1 abgeschwächt hatte. Um Größenordnungen höhere zweidimensionale Flutsimulationen mit der Modellierungssoftware ANUGA zeigen extensive Rückstaueffekte in den Haupttributären. Die Grenzen dieser Rückstaueffekte stimmen mit den Vorkommen von Stauwasserablagerungen überein und belegen somit den fluviatilen Charakter der mittelalterlichen Sedimentationsereignisse. Diese Dissertation liefert somit den ersten quantitativen Beweis für die Hypothese, dass die mächtigen mittelalterlichen Sedimentablagerungen des Pokhara Tals durch von starken Erdbeben ausgelösten Ausbrüchen großer ehemaliger Gletscherseen im Oberlauf des Seti Khola zusammenhängen, welche Fluten mit Spitzenabflüssen von >50.000 m³ s-1 produzierten. Aufbauend auf diesem verbesserten Verständnis vergangener Fluten entlang des Seti Khola analysierte ich die Auswirkungen potenzieller zukünftiger natürlicher Dammbruchfluten auf die Landbedeckung des Pokhara Tals, einschließlich Siedlungsfläche und Infrastruktur, anhand von hochauflösenden Satelliten- und OpenStreetMap-Daten. Meine HEC-RAS-Simulationen von zehn Flutszenarien mit Spitzenabflüssen zwischen 1.000 und 10.000 m³ s-1 ergaben, dass die relative Überflutungsgefahr in den nordwestlichen Randbereichen Pokharas am höchsten ist. Dort kann eine hydraulische Aufstauung oberhalb von engen Schluchten zu lokal höheren Überflutungstiefen führen, was eine potenzielle Gefahr für die sich in diesen Flussabschnitten befindenden informellen Siedlungen und Kiesabbaulokalitäten darstellt. Meine Analyse der Bebauungsdynamik zweier potenziell betroffener informeller Siedlungen mithilfe von hochauflösenden, multi-temporalen RapidEye-, PlanetScope- und Google Earth-Satellitenbildern ergab, dass sich die Exposition in etwas mehr als einem Jahrzehnt (2008 bis 2021) lokal um das Drei- bis Zwanzigfache erhöhte. Die vorliegende Dissertation liefert neue quantitative Erkenntnisse einerseits über die Suszeptibilität von moränengedämmten Seen für plötzliche Gletscherseeausbrüche (GLOFs) auf regionaler Ebene und andererseits, auf lokaler Ebene, über die Strömungsdynamik der sich talabwärtsbewegenden Flutwellen vergangener Ereignisse. Meine anschließende Untersuchung der Auswirkungen potenzieller künftiger natürlicher Dammbruchfluten auf exponierte Infrastruktur und (informelle) Siedlungen kann einen wertvollen Beitrag zu zukünftigen Multi-Risikobewertung für das Pokhara Tal leisten. KW - outburst floods KW - Bayesian multi-level logistic regression KW - hydrodynamic modelling KW - Himalayas KW - GLOF KW - Nepal KW - flood hazard KW - Bayes'sche Mehrebenenregression KW - GLOF (Gletscherseeausbruchsflut) KW - Himalaya-Gebirge KW - Nepal KW - Flutgefährdung KW - hydrodynamische Modellierung KW - Dammbruchfluten Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569972 ER - TY - THES A1 - Zeitz, Maria T1 - Modeling the future resilience of the Greenland Ice Sheet T1 - Numerische Modellierung der zukünftigen Resilienz des grönländischen Eisschildes BT - from the flow of ice to the interplay of feedbacks N2 - The Greenland Ice Sheet is the second-largest mass of ice on Earth. Being almost 2000 km long, more than 700 km wide, and more than 3 km thick at the summit, it holds enough ice to raise global sea levels by 7m if melted completely. Despite its massive size, it is particularly vulnerable to anthropogenic climate change: temperatures over the Greenland Ice Sheet have increased by more than 2.7◦C in the past 30 years, twice as much as the global mean temperature. Consequently, the ice sheet has been significantly losing mass since the 1980s and the rate of loss has increased sixfold since then. Moreover, it is one of the potential tipping elements of the Earth System, which might undergo irreversible change once a warming threshold is exceeded. This thesis aims at extending the understanding of the resilience of the Greenland Ice Sheet against global warming by analyzing processes and feedbacks relevant to its centennial to multi-millennial stability using ice sheet modeling. One of these feedbacks, the melt-elevation-feedback is driven by the temperature rise with decreasing altitudes: As the ice sheet melts, its thickness and surface elevation decrease, exposing the ice surface to warmer air and thus increasing the melt rates even further. The glacial isostatic adjustment (GIA) can partly mitigate this melt-elevation feedback as the bedrock lifts in response to an ice load decrease, forming the negative GIA feedback. In my thesis, I show that the interaction between these two competing feedbacks can lead to qualitatively different dynamical responses of the Greenland Ice Sheet to warming – from permanent loss to incomplete recovery, depending on the feedback parameters. My research shows that the interaction of those feedbacks can initiate self-sustained oscillations of the ice volume while the climate forcing remains constant. Furthermore, the increased surface melt changes the optical properties of the snow or ice surface, e.g. by lowering their albedo, which in turn enhances melt rates – a process known as the melt-albedo feedback. Process-based ice sheet models often neglect this melt-albedo feedback. To close this gap, I implemented a simplified version of the diurnal Energy Balance Model, a computationally efficient approach that can capture the first-order effects of the melt-albedo feedback, into the Parallel Ice Sheet Model (PISM). Using the coupled model, I show in warming experiments that the melt-albedo feedback almost doubles the ice loss until the year 2300 under the low greenhouse gas emission scenario RCP2.6, compared to simulations where the melt-albedo feedback is neglected, and adds up to 58% additional ice loss under the high emission scenario RCP8.5. Moreover, I find that the melt-albedo feedback dominates the ice loss until 2300, compared to the melt-elevation feedback. Another process that could influence the resilience of the Greenland Ice Sheet is the warming induced softening of the ice and the resulting increase in flow. In my thesis, I show with PISM how the uncertainty in Glen’s flow law impacts the simulated response to warming. In a flow line setup at fixed climatic mass balance, the uncertainty in flow parameters leads to a range of ice loss comparable to the range caused by different warming levels. While I focus on fundamental processes, feedbacks, and their interactions in the first three projects of my thesis, I also explore the impact of specific climate scenarios on the sea level rise contribution of the Greenland Ice Sheet. To increase the carbon budget flexibility, some warming scenarios – while still staying within the limits of the Paris Agreement – include a temporal overshoot of global warming. I show that an overshoot by 0.4◦C increases the short-term and long-term ice loss from Greenland by several centimeters. The long-term increase is driven by the warming at high latitudes, which persists even when global warming is reversed. This leads to a substantial long-term commitment of the sea level rise contribution from the Greenland Ice Sheet. Overall, in my thesis I show that the melt-albedo feedback is most relevant for the ice loss of the Greenland Ice Sheet on centennial timescales. In contrast, the melt-elevation feedback and its interplay with the GIA feedback become increasingly relevant on millennial timescales. All of these influence the resilience of the Greenland Ice Sheet against global warming, in the near future and on the long term. N2 - Das grönländische Eisschild ist die zweitgrößte Eismasse der Erde. Es fasst genug Eis, um den globalen Meeresspiegel um 7m anzuheben, wenn er vollständig schmilzt. Trotz seiner Größe ist es durch den vom Menschen verursachten Klimawandel immens gefährdet: Die Temperaturen über Grönland sind in den letzten 30 Jahren um mehr als 2,7◦C gestiegen, doppelt so stark wie im globalen Mittel. Daher verliert das Eisschild seit den 1980er Jahren an Masse und die Verlustrate hat sich seitdem versechsfacht. Zudem ist das grönländische Eisschild ein Kippelement des Erdsystems, es könnte sich unwiederbringlich verändern, wenn die globale Erwärmung einen Schwellwert überschreiten sollte. Ziel dieser Arbeit ist es, das Verständnis für die Resilienz des grönländischen Eisschildes zu erweitern, indem relevante Rückkopplungen und Prozesse analysiert werden. Eine dieser Rückkopplungen, die positive Schmelz-Höhen-Rückkopplung wird durch den Temperaturanstieg bei abnehmender Höhe angetrieben: Wenn der Eisschild schmilzt, nehmen seine Dicke und die Oberflächenhöhe ab, wodurch die Eisoberfläche wärmerer Luft ausgesetzt wird und die Schmelzraten noch weiter ansteigen. Die glaziale isostatische Anpassung (GIA) kann die Schmelz-Höhen-Rückkopplung teilweise abschwächen, da sich der Erdmantel als Reaktion auf die abnehmende Eislast hebt und so die negative GIA-Rückkopplung bildet. Ich zeige, dass die Interaktion zwischen diesen beiden konkurrierenden Rückkopplungen zu qualitativ unterschiedlichem dynamischen Verhalten des grönländischen Eisschildes bei Erwärmung führen kann - von permanentem Verlust bis hin zu unvollständiger Erholung. Das Zusammenspiel dieser Rückkopplungen kann zudem Oszillationen des Eisvolumens in einem konstanten Klima auslösen. Die verstärkte Oberflächenschmelze ändert die optischen Eigenschaften von Schnee und Eis und verringert deren Albedo, was wiederum die Schmelzraten erhöht – die sogenannte Schmelz-Albedo Rückkopplung. Da viele Eisschildmodelle diese vernachlässigen, habe ich eine vereinfachte Version des tageszeitlichen Energiebilanzmodells, welches die Effekte der Schmelz-Albedo-Rückkopplung erster Ordnung erfassen kann, in das Eisschildmodell PISM implementiert. Mithilfe des gekoppelten Modells zeige ich, dass die Schmelz-Albedo-Rückkopplung den Eisverlust bis zum Jahr 2300 im moderaten Klimaszenario RCP2.6 fast verdoppelt und im RCP8.5-Szenario, welches von starken Emissionen ausgeht, bis zu 58% zusätzlichen Eisverlust verursacht, im Vergleich zu Simulationen in denen die Schmelz-Albedo-Rückkopplung vernachlässigt wird. Bis zum Jahr 2300 trägt die Schmelz-Albedo-Rückkopplung mehr zum Eisverlust bei als die Schmelz-Höhen-Rückkopplung. Ein weiterer Prozess, der die Widerstandsfähigkeit des grönländischen Eisschilds beeinflussen könnte, ist die Erweichung des Eises bei steigenden Temperaturen, sowie die daraus resultierende Zunahme des Eisflusses. In meiner Dissertation zeige ich, wie sich die parametrische Unsicherheit in dem Flussgesetz auf die Ergebnisse von PISM Simulationen bei Erwärmung auswirkt. In einem idealisierten, zweidimensionalen Experiment mit fester klimatischer Massenbilanz führt die Unsicherheit in den Strömungsparametern zu einer Bandbreite des Eisverlustes, die mit der Bandbreite durch unterschiedliche Erwärmungen vergleichbar ist. Neben den grundsätzlichen Prozessen und Rückkopplungen untersuchte ich auch die Auswirkungen konkreter Klimaszenarien auf den Eisverlust von Grönland. Um die Flexibilität des Kohlenstoffbudgets zu erhöhen sehen einige Erwärmungsszenarien eine temporäre Überschreitung der globalen Temperaturen über das Ziel von 1,5◦C vor. Ich zeige, dass eine solche Temperaturerhöhung den kurz- und langfristigen Eisverlust von Grönland um mehrere Zentimeter erhöht. Der langfristige Meeresspiegelanstieg ist auf die anhaltende Temperaturerhöhung in hohen Breitengraden zurückzuführen. Solche Prozesse führen zu einem langfristigen und bereits festgelegtem Meeresspiegelanstieg, selbst wenn die Temperaturen nicht weiter steigen. Insgesamt zeige ich in meiner Arbeit, dass die Schmelz-Albedo-Rückkopplung für den Eisverlust des grönländischen Eisschilds in den nächsten Jahrhunderten am wichtigsten ist. Im Gegensatz dazu werden die Schmelz-Höhen-Rückkopplung und ihr Zusammenspiel mit der GIA-Rückkopplung auf längeren Zeiträumen immer relevanter. KW - Greenland Ice Sheet KW - ice-flow modeling KW - sea-level rise KW - Grönländisches Eisschild KW - Computersimulation KW - Meeresspiegelanstieg Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568839 ER - TY - THES A1 - Krummenauer, Linda T1 - Global heat adaptation among urban populations and its evolution under different climate futures T1 - Globale Hitzeanpassung urbaner Bevölkerungen und deren Entwicklung unter verschiedenen klimatischen Zukünften N2 - Heat and increasing ambient temperatures under climate change represent a serious threat to human health in cities. Heat exposure has been studied extensively at a global scale. Studies comparing a defined temperature threshold with the future daytime temperature during a certain period of time, had concluded an increase in threat to human health. Such findings however do not explicitly account for possible changes in future human heat adaptation and might even overestimate heat exposure. Thus, heat adaptation and its development is still unclear. Human heat adaptation refers to the local temperature to which populations are adjusted to. It can be inferred from the lowest point of the U- or V-shaped heat-mortality relationship (HMR), the Minimum Mortality Temperature (MMT). While epidemiological studies inform on the MMT at the city scale for case studies, a general model applicable at the global scale to infer on temporal change in MMTs had not yet been realised. The conventional approach depends on data availability, their robustness, and on the access to daily mortality records at the city scale. Thorough analysis however must account for future changes in the MMT as heat adaptation happens partially passively. Human heat adaptation consists of two aspects: (1) the intensity of the heat hazard that is still tolerated by human populations, meaning the heat burden they can bear and (2) the wealth-induced technological, social and behavioural measures that can be employed to avoid heat exposure. The objective of this thesis is to investigate and quantify human heat adaptation among urban populations at a global scale under the current climate and to project future adaptation under climate change until the end of the century. To date, this has not yet been accomplished. The evaluation of global heat adaptation among urban populations and its evolution under climate change comprises three levels of analysis. First, using the example of Germany, the MMT is calculated at the city level by applying the conventional method. Second, this thesis compiles a data pool of 400 urban MMTs to develop and train a new model capable of estimating MMTs on the basis of physical and socio-economic city characteristics using multivariate non-linear multivariate regression. The MMT is successfully described as a function of the current climate, the topography and the socio-economic standard, independently of daily mortality data for cities around the world. The city-specific MMT estimates represents a measure of human heat adaptation among the urban population. In a final third analysis, the model to derive human heat adaptation was adjusted to be driven by projected climate and socio-economic variables for the future. This allowed for estimation of the MMT and its change for 3 820 cities worldwide for different combinations of climate trajectories and socio-economic pathways until 2100. The knowledge on the evolution of heat adaptation in the future is a novelty as mostly heat exposure and its future development had been researched. In this work, changes in heat adaptation and exposure were analysed jointly. A wide range of possible health-related outcomes up to 2100 was the result, of which two scenarios with the highest socio-economic developments but opposing strong warming levels were highlighted for comparison. Strong economic growth based upon fossil fuel exploitation is associated with a high gain in heat adaptation, but may not be able to compensate for the associated negative health effects due to increased heat exposure in 30% to 40% of the cities investigated caused by severe climate change. A slightly less strong, but sustainable growth brings moderate gains in heat adaptation but a lower heat exposure and exposure reductions in 80% to 84% of the cities in terms of frequency (number of days exceeding the MMT) and intensity (magnitude of the MMT exceedance) due to a milder global warming. Choosing a 2 ° C compatible development by 2100 would therefore lower the risk of heat-related mortality at the end of the century. In summary, this thesis makes diverse and multidisciplinary contributions to a deeper understanding of human adaptation to heat under the current and the future climate. It is one of the first studies to carry out a systematic and statistical analysis of urban characteristics which are useful as MMT drivers to establish a generalised model of human heat adaptation, applicable at the global level. A broad range of possible heat-related health options for various future scenarios was shown for the first time. This work is of relevance for the assessment of heat-health impacts in regions where mortality data are not accessible or missing. The results are useful for health care planning at the meso- and macro-level and to urban- and climate change adaptation planning. Lastly, beyond having met the posed objective, this thesis advances research towards a global future impact assessment of heat on human health by providing an alternative method of MMT estimation, that is spatially and temporally flexible in its application. N2 - Hitze und steigende Umgebungstemperaturen im Zuge des Klimawandels stellen eine ernsthafte Bedrohung für die menschliche Gesundheit in Städten dar. Die Hitzeexposition wurde umfassend auf globaler Ebene untersucht. Studien, die eine definierte Temperaturschwelle mit der zukünftigen Tagestemperatur während eines bestimmten Zeitraums verglichen, hatten eine Zunahme der Gefährdung der menschlichen Gesundheit ergeben. Solche Ergebnisse berücksichtigen jedoch nicht explizit mögliche Veränderungen der zukünftigen menschlichen Hitzeadaption und könnten daher sogar die Hitzeexposition überschätzen. Somit ist die menschliche Adaption an Hitze und ihre zukünftige Entwicklung noch unklar. Die menschliche Hitzeadaption bezieht sich auf die lokale Temperatur, an die sich die Bevölkerung angepasst hat. Sie lässt sich aus dem Tiefpunkt der U- oder V-förmigen Relation zwischen Hitze und Mortalität (HMR), der Mortalitätsminimaltemperatur (MMT), ableiten. Während epidemiologische Fallstudien über die MMT auf Stadtebene informieren, wurde ein auf globaler Ebene anwendbares allgemeines Modell, um auf die zeitliche Veränderung der MMTs zu schließen, bisher noch nicht realisiert. Der konventionelle Ansatz ist abhängig von der Datenverfügbarkeit, ihrer Robustheit und dem Zugang zu täglichen Mortalitätsdaten auf Stadtebene. Eine gründliche Analyse muss jedoch zukünftige Veränderungen in der MMT berücksichtigen, da die menschliche Hitzeanpassung teils passiv erfolgt. Die menschliche Hitzeanpassung besteht aus zwei Aspekten: (1) aus der Intensität der Hitze, die von der menschlichen Bevölkerung noch toleriert wird, also die Hitzebelastung, die sie ertragen kann, und (2) aus vermögensbedingten technologischen, sozialen und verhaltensbezogenen Maßnahmen, die zur Vermeidung von Hitzeexposition eingesetzt werden können. Das Ziel dieser Arbeit ist es, die menschliche Hitzeanpassung der städtischen Bevölkerung unter dem aktuellen Klima auf globaler Ebene zu untersuchen und zu quantifizieren und die zukünftige Anpassung an den Klimawandel bis zum Ende des Jahrhunderts zu projizieren. Dies wurde bis heute noch nicht erreicht. Die Bewertung der globalen Hitzeanpassung städtischer Bevölkerungen und ihrer Entwicklung unter dem Klimawandel umfasst drei Analyseebenen. Erstens wird am Beispiel Deutschlands die MMT auf Stadtebene nach der konventionellen Methode berechnet. Zweitens trägt diese Arbeit einen Datenpool von 400 städtischen MMTs zusammen, um auf dessen Basis ein neues Modell zu entwickeln und zu trainieren, welches in der Lage ist, MMTs auf der Grundlage von physischen und sozioökonomischen Stadtmerkmalen mittels multivariater nichtlinearer multivariater Regression zu schätzen. Es wird gezeigt, dass die MMT als Funktion des aktuellen Klimas, der Topographie und des sozioökonomischen Standards beschrieben werden kann, unabhängig von täglichen Sterblichkeitsdaten für Städte auf der ganzen Welt. Die stadtspezifischen MMT-Schätzungen stellen ein Maß für die menschliche Hitzeanpassung der städtischen Bevölkerung dar. In einer letzten dritten Analyse wurde das Modell zur Schätzung der menschlichen Hitzeadaption angepasst, um von für die Zukunft projizierten Klima- und sozioökonomischen Variablen angetrieben zu werden. Dies ermöglichte eine Schätzung des MMT und seiner Veränderung für 3 820 Städte weltweit für verschiedene Kombinationen aus Klimatrajektorien und sozioökonomischen Entwicklungspfaden bis 2100. Das Wissen über die Entwicklung der menschlichen Hitzeanpassung in der Zukunft ist ein Novum, da bisher hauptsächlich die Hitzeexposition und ihre zukünftige Entwicklung erforscht wurden. In dieser Arbeit wurden die Veränderungen der menschlichen Hitzeadaptation und der Hitzeexposition gemeinsam analysiert. Das Ergebnis ist ein breites Spektrum möglicher gesundheitsbezogener Zukünfte bis 2100, von denen zum Vergleich zwei Szenarienkombinationen mit den höchsten sozioökonomischen Entwicklungen, aber gegensätzlichen starken Erwärmungsniveaus hervorgehoben wurden. Ein starkes Wirtschaftswachstum auf der Grundlage der Nutzung fossiler Brennstoffe fördert zwar einen hohen Zugewinn an Hitzeanpassung, kann jedoch die damit verbundenen negativen gesundheitlichen Auswirkungen aufgrund der erhöhten Exposition in rund 30% bis 40% der untersuchten Städte aufgrund eines starken Klimawandels möglicherweise nicht ausgleichen. Ein etwas weniger starkes, dafür aber nachhaltiges Wachstum bringt aufgrund einer milderen globalen Erwärmung eine moderate Hitzeanpassung und eine geringere Hitzeexposition und sogar eine Abnahme der Exposition in 80% bis 84% der Städte in Bezug auf Häufigkeit (Anzahl der Tage über der MMT) und Intensität (Magnitude der MMT-Überschreitung). Die Wahl einer 2 ° C-kompatiblen Entwicklung bis 2100 würde daher das Risiko einer hitzebedingten Sterblichkeit am Ende des Jahrhunderts senken. Zusammenfassend liefert diese Dissertation vielfältige und multidisziplinäre Beiträge zu einem tieferen Verständnis der menschlichen Hitzeanpassung unter dem gegenwärtigen und zukünftigen Klima. Es ist eine der ersten Studien, die eine systematische und statistische Analyse städtischer Merkmale durchführt, die sich als MMT-Treiber verwenden lassen, um ein verallgemeinertes Modell der menschlichen Hitzeanpassung zu erarbeiten, das auf globaler Ebene anwendbar ist. Erstmals wurde ein breites Spektrum möglicher hitzebedingter Gesundheitsoptionen für verschiedene Zukunftsszenarien aufgezeigt. Diese Arbeit ist von Bedeutung für die Bewertung von hitzebezogener Gesundheitsauswirkungen in Regionen, in denen Mortalitätsdaten nicht zugänglich sind oder fehlen. Die Ergebnisse sind nützlich für die Gesundheitsplanung auf Meso- und Makroebene sowie für die Stadtplanung und die Planung der Anpassung an den Klimawandel. Über das Erreichen des gestellten Ziels hinaus treibt diese Dissertation die Forschung in Richtung einer globalen zukünftigen Folgenabschätzung von Hitze auf die menschliche Gesundheit voran, indem eine alternative Methode der MMT-Schätzung bereitgestellt wird, die in ihrer Anwendung räumlich und zeitlich flexibel ist. KW - heat KW - adaptation KW - global KW - populations KW - climate change KW - temperature KW - mortality KW - minimum mortality temperature KW - projection KW - future KW - health KW - model KW - socio-economy KW - wealth KW - acclimatisation KW - Akklimatisierung KW - Anpassung KW - Hitzeanpassung KW - Klimawandel KW - Zukunft KW - global KW - Gesundheit KW - Hitze KW - Mortalitäts-Minimal-Temperatur KW - Modell KW - Mortalität KW - Bevölkerung KW - Projektion KW - Sozioökonomie KW - Temperatur KW - Wohlstand KW - exposure KW - hazard KW - cities KW - Exposition KW - Naturgefahr KW - Städte Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-559294 ER - TY - THES A1 - Samprogna Mohor, Guilherme T1 - Exploring the transferability of flood loss models across flood types N2 - The estimation of financial losses is an integral part of flood risk assessment. The application of existing flood loss models on locations or events different from the ones used to train the models has led to low performance, showing that characteristics of the flood damaging process have not been sufficiently well represented yet. To improve flood loss model transferability, I explore various model structures aiming at incorporating different (inland water) flood types and pathways. That is based on a large survey dataset of approximately 6000 flood-affected households which addresses several aspects of the flood event, not only the hazard characteristics but also information on the affected building, socioeconomic factors, the household's preparedness level, early warning, and impacts. Moreover, the dataset reports the coincidence of different flood pathways. Whilst flood types are a classification of flood events reflecting their generating process (e.g. fluvial, pluvial), flood pathways represent the route the water takes to reach the receptors (e.g. buildings). In this work, the following flood pathways are considered: levee breaches, river floods, surface water floods, and groundwater floods. The coincidence of several hazard processes at the same time and place characterises a compound event. In fact, many flood events develop through several pathways, such as the ones addressed in the survey dataset used. Earlier loss models, although developed with one or multiple predictor variables, commonly use loss data from a single flood event which is attributed to a single flood type, disregarding specific flood pathways or the coincidence of multiple pathways. This gap is addressed by this thesis through the following research questions: 1. In which aspects do flood pathways of the same (compound inland) flood event differ? 2. How much do factors which contribute to the overall flood loss in a building differ in various settings, specifically across different flood pathways? 3. How well can Bayesian loss models learn from different settings? 4. Do compound, that is, coinciding flood pathways result in higher losses than a single pathway, and what does the outcome imply for future loss modelling? Statistical analysis has found that households affected by different flood pathways also show, in general, differing characteristics of the affected building, preparedness, and early warning, besides the hazard characteristics. Forecasting and early warning capabilities and the preparedness of the population are dominated by the general flood type, but characteristics of the hazard at the object-level, the impacts, and the recovery are more related to specific flood pathways, indicating that risk communication and loss models could benefit from the inclusion of flood-pathway-specific information. For the development of the loss model, several potentially relevant predictors are analysed: water depth, duration, velocity, contamination, early warning lead time, perceived knowledge about self-protection, warning information, warning source, gap between warning and action, emergency measures, implementation of property-level precautionary measures (PLPMs), perceived efficacy of PLPMs, previous flood experience, awareness of flood risk, ownership, building type, number of flats, building quality, building value, house/flat area, building area, cellar, age, household size, number of children, number of elderly residents, income class, socioeconomic status, and insurance against floods. After a variable selection, descriptors of the hazard, building, and preparedness were deemed significant, namely: water depth, contamination, duration, velocity, building area, building quality, cellar, PLPMs, perceived efficacy of PLPMs, emergency measures, insurance, and previous flood experience. The inclusion of the indicators of preparedness is relevant, as they are rarely involved in loss datasets and in loss modelling, although previous studies have shown their potential in reducing losses. In addition, the linear model fit indicates that the explanatory factors are, in several cases, differently relevant across flood pathways. Next, Bayesian multilevel models were trained, which intrinsically incorporate uncertainties and allow for partial pooling (i.e. different groups of data, such as households affected by different flood pathways, can learn from each other), increasing the statistical power of the model. A new variable selection was performed for this new model approach, reducing the number of predictors from twelve to seven variables but keeping factors of the hazard, building, and preparedness, namely: water depth, contamination, duration, building area, PLPMs, insurance, and previous flood experience. The new model was trained not only across flood pathways but also across regions of Germany, divided according to general socioeconomic factors and insurance policies, and across flood events. The distinction across regions and flood events did not improve loss modelling and led to a large overlap of regression coefficients, with no clear trend or pattern. The distinction of flood pathways showed credibly distinct regression coefficients, leading to a better understanding of flood loss modelling and indicating one potential reason why model transferability has been challenging. Finally, new model structures were trained to include the possibility of compound inland floods (i.e. when multiple flood pathways coincide on the same affected asset). The dataset does not allow for verifying in which sequence the flood pathway waves occurred and predictor variables reflect only their mixed or combined outcome. Thus, two Bayesian models were trained: 1. a multi-membership model, a structure which learns the regression coefficients for multiple flood pathways at the same time, and 2. a multilevel model wherein the combination of coinciding flood pathways makes individual categories. The multi-membership model resulted in credibly different coefficients across flood pathways but did not improve model performance in comparison to the model assuming only a single dominant flood pathway. The model with combined categories signals an increase in impacts after compound floods, but due to the uncertainty in model coefficients and estimates, it is not possible to ascertain such an increase as credible. That is, with the current level of uncertainty in differentiating the flood pathways, the loss estimates are not credibly distinct from individual flood pathways. To overcome the challenges faced, non-linear or mixed models could be explored in the future. Interactions, moderation, and mediation effects, as well as non-linear effects, should also be further studied. Loss data collection should regularly include preparedness indicators, and either data collection or hydraulic modelling should focus on the distinction of coinciding flood pathways, which could inform loss models and further improve estimates. Flood pathways show distinct (financial) impacts, and their inclusion in loss modelling proves relevant, for it helps in clarifying the different contribution of influencing factors to the final loss, improving understanding of the damaging process, and indicating future lines of research. N2 - Die Schätzung finanzieller Schäden ist ein wesentlicher Bestandteil der Hochwasserrisikoanalyse. Die Anwendung bestehender Hochwasserschadensmodelle auf anderen Orten oder Ereignisse als jene, die zur Kalibrierung der Modelle verwendet wurden, hat zu einer geringen Modellgüte geführt. Dies zeigt, dass die Merkmale des Hochwasserschadensprozesses in den Modellen noch nicht hinreichend repräsentiert sind. Um die Übertragbarkeit von Hochwasserschadensmodellen zu verbessern, habe ich verschiedene Modellstrukturen untersucht, die darauf abzielen, unterschiedliche Hochwassertypen und wirkungspfade einzubeziehen. Dies geschieht auf der Grundlage eines großen Datensatzes von ca. 6000 Fällen überschwemmungsgeschädigter Haushalte, der mehrere Aspekte des Hochwasserereignisses berücksichtigt. Diese sind nicht nur die Gefährdungsmerkmale, sondern auch Informationen über das betroffene Gebäude, sozioökonomische Faktoren, die Vorsorge des Haushalts, die Frühwarnung und die Auswirkungen. Darüber hinaus enthält der Datensatz Informationen über das Vorkommen verschiedener Hochwasserwirkungspfade. Im Gegensatz zu den Hochwassertypen, die eine Klassifizierung von Hochwasserereignissen darstellen und deren Entstehungsprozess widerspiegeln (z. B. Fluss- oder Regenhochwasser), repräsentieren die Hochwasserwirkungspfade den Weg, den das Wasser nimmt, um die Rezeptoren (z. B. die Gebäude) zu erreichen. In dieser Arbeit werden folgende Hochwasserwirkungspfade betrachtet: Deichbrüche, Flusshochwasser, Überflutung durch oberflächlich abfließendes Wasser und Grundwasserhochwasser. Das Zusammentreffen mehrerer Gefahrenprozesse zur selben Zeit und am selben Ort kennzeichnet ein Verbundereignis (compound event). Tatsächlich entwickeln sich viele Hochwasserereignisse über mehrere Wirkungspfade, z. B. die vorher erwähnten. Frühere Schadensmodelle, die zwar mit einer oder mehreren Prädiktorvariablen entwickelt wurden, verwenden in der Regel Schadensdaten eines einzelnen Hochwasserereignisses, das einem bestimmten Hochwassertyp zugeordnet wird. Spezifische Hochwasserwirkungspfade oder das Zusammentreffen mehrerer Wirkungspfade werden dabei vernachlässigt. An dieser Forschungslücke setzt die vorliegende Arbeit mit folgenden Forschungsfragen an: 1) Inwiefern unterscheiden sich die Hochwasserwirkungspfade desselben (zusammengesetzten) Hochwasserereignisses? 2) Inwieweit unterscheiden sich die Faktoren, die zum gesamten Hochwasserschaden an einem Gebäude beitragen, in verschiedenen Situationen, insbesondere bei verschiedenen Hochwasserwirkungspfaden? 3) Wie gut können Bayes'sche Schadensmodelle aus verschiedenen Situationen lernen? 4) Führen gemischte, d. h. mehrere zusammentreffende Hochwasserwirkungspfade, zu höheren Schäden als ein einzelner Pfad und was bedeuten die Ergebnisse für die künftige Schadensmodellierung? Die statistische Analyse zeigt, dass Haushalte, die von verschiedenen Hochwasserwirkungspfaden betroffen sind, im Allgemeinen neben den Gefahrenmerkmalen auch unterschiedliche Eigenschaften des betroffenen Gebäudes sowie der Vorsorge und der Frühwarnung aufweisen. Die Variablen des Frühwarnsystems und die Vorsorge der Bevölkerung werden von dem allgemeinen Hochwassertyp dominiert, wohingegen die Merkmale der Gefahr auf Objektebene, die Auswirkungen und die Wiederherstellung von den spezifischeren Hochwasserwirkungspfaden dominiert. Dies deutet darauf hin, dass Risikokommunikation und Schadensmodelle von der Einbeziehung hochwasserwirkungspfad-spezifischer Informationen profitieren könnten. Für die Entwicklung des Schadensmodells wurden mehrere potenziell relevante Prädiktoren analysiert: Wassertiefe, Dauer, Geschwindigkeit, Verschmutzung, Vorwarnzeit, wahrgenommenes Wissen über Selbstschutz, Warninformation, Warnquelle, Zeitspanne zwischen Warnung und Handlung, Notfallmaßnahmen, Umsetzung von Vorsorgemaßnahmen auf Grundstücksebene (PLPMs), wahrgenommene Wirksamkeit von PLPMs, frühere Hochwassererfahrungen, Bewusstsein für das Hochwasserrisiko, Eigentumsverhältnisse, Gebäudetyp, Anzahl der Wohnungen, Gebäudequalität, Gebäudewert, Haus-/Wohnungsfläche, Gebäudefläche, Keller, Alter der befragten Person, Haushaltsgröße, Anzahl der Kinder, Anzahl der älteren Menschen, monatliches Einkommen sowie sozioökonomischer Status und Versicherung gegen Hochwasser. Nach einer Variablenauswahl wurden folgende Deskriptoren der Gefahr, des Gebäudes und der Vorbereitung als signifikant eingestuft: Wassertiefe, Verschmutzung, Überflutungsdauer, Geschwindigkeit, Gebäudefläche, Gebäudequalität, Keller, PLPMs, wahrgenommene Wirksamkeit von PLPMs, Notfallmaßnahmen, Versicherung und frühere Hochwassererfahrung. Die Einbeziehung der letztgenannten Gruppe von Faktoren ist von Bedeutung, da Indikatoren für die Vorsorge nur selten in Schadensdatensätze und Schadensmodellierung integriert werden, obwohl frühere Studien gezeigt haben, dass sie zur Verringerung von Schäden beitragen können. Die lineare Modellanpassung zeigte, dass die erklärenden Faktoren in mehreren Fällen je nach Hochwasserpfad unterschiedlich relevant sind. Als Nächstes wurden Bayes'sche Mehrebenenmodelle trainiert, die Unsicherheiten immanent einbeziehen und ein partielles Pooling ermöglichen. Das heißt, verschiedene Datengruppen (Haushalte, die von verschiedenen Hochwasserwirkungspfaden betroffen sind) können voneinander lernen, was die statistische Aussagekraft des Modells erhöht. Für diesen neuen Modellansatz wurde eine aktualisierte Variablenauswahl getroffen, bei der die Anzahl der Prädiktoren von zwölf auf sieben reduziert wurde, aber Faktoren der Gefahr, des Gebäudes und der Vorbereitung beibehalten wurden. Diese sind Wassertiefe, Verschmutzung, Dauer, Gebäudefläche, PLPMs, Versicherung und frühere Hochwassererfahrung. Das neue Modell wurde nicht nur über Hochwasserwirkungspfade, sondern auch über Regionen in Deutschland – unterteilt nach allgemeinen sozioökonomischen Faktoren und Versicherungspolicen – sowie über Hochwasserereignisse trainiert. Die Unterscheidung nach Regionen und Hochwasserereignissen verbesserte die Schadensmodellierung nicht und führte zu einer großen Überlappung der Regressionskoeffizienten ohne klaren Trend oder eindeutiges Muster. Die Unterscheidung nach Hochwasserwirkungspfaden ergab glaubhaft unterschiedliche Regressionskoeffizienten, was zu einem besseren Verständnis der Modellierung von Hochwasserschäden führte und einen möglichen Grund für die schwierige Übertragbarkeit der Modelle auf andere Situationen darstellt. Schließlich wurden neue Modellstrukturen trainiert, um die Möglichkeit gemischter (Binnen)überschwemmungen, d. h. das Zusammentreffen mehrerer Hochwasserwirkungspfade auf demselben Objekt, zu berücksichtigen. Anhand des Datensatzes lässt sich nicht überprüfen, in welcher Reihenfolge die Hochwasserpfadwellen auftraten, und die Prädiktorvariablen zeigen nur deren gemischtes oder kombiniertes Ergebnis. Daher wurden zwei Bayes'sche Modelle trainiert: 1) ein Multi-Membership-Modell als Struktur, die die Regressionskoeffizienten für mehrere Hochwasserwirkungspfade gleichzeitig lernt, und 2) ein Mehrebenenmodell, bei dem die Kombination zusammentreffender Hochwasserwirkungspfade einzelne Kategorien bildet. Ersteres führte zu glaubhaft unterschiedlichen Koeffizienten für die verschiedenen Hochwasserwirkungspfade, verbesserte aber nicht die Modellleistung im Vergleich zu dem Modell, das nur einen einzigen, dominanten Hochwasserpfad annimmt. Das Modell mit kombinierten Wirkungspfadkategorien deutet auf eine Zunahme der Auswirkungen nach gemischten Überschwemmungen hin. Aufgrund der Unsicherheit der Modellkoeffizienten und -schätzungen ist es jedoch nicht möglich, eine solche Zunahme als glaubwürdig plausibel zu bewerten. Das heißt, bei dem derzeitigen Grad an Unsicherheit hinsichtlich der Differenzierung der Hochwasserwirkungspfade sind die Schadensschätzungen nicht glaubwürdig von den einzelnen Hochwasserwirkungspfaden zu unterscheiden. Zur Überwindung der bestehenden Probleme könnten nichtlineare oder gemischte Modelle untersucht werden. Zudem sollten Interaktionseffekte, Moderations- und Mediationseffekte sowie nichtlineare Effekte weiter erforscht werden. Bei der Schadensdaten\-erhebung sollten außerdem regelmäßig Indikatoren für die Vorsorge einbezogen werden, und entweder bei der Datenerhebung oder bei der hydraulischen Modellierung sollte der Schwerpunkt auf der Unterscheidung kombinierter Hochwasserwirkungspfade liegen, was die Schadensmodelle bereichern und die Schätzungen weiter verbessern könnte. Hochwasserwirkungspfade zeigen differente (finanzielle) Auswirkungen und ihre Einbeziehung in die Schadensmodellierung hat sich als relevant erwiesen, da sie dazu beitragen, den unterschiedlichen Beitrag der Einflussfaktoren zum endgültigen Schaden zu klären, das Verständnis des Schadensprozesses zu verbessern und künftige Forschungslinien aufzuzeigen. T2 - Untersuchung der Übertragbarkeit von Hochwasserschadensmodellen über Hochwassertypen KW - flood KW - financial loss KW - flood loss modelling KW - Bayesian model KW - multilevel modelling KW - flood pathway KW - Hochwasser KW - finanzielle Schäden KW - Schätzung finanzieller Schäden KW - Bayes'sche Modelle KW - Mehrebenenmodelle KW - Hochwasserwirkungspfad Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557141 ER - TY - THES A1 - Heidenreich, Anna T1 - Risk Communicaton of Natural Hazards BT - explaining pathways to adaptive behaviour by applying psychological theories and using multiple quantative methods in the context of heat stress and flooding N2 - Natural hazards pose a threat to human health and life. In Germany, where the research for this thesis was conducted, numerous weather extremes occurred in the recent past that caused high numbers of fatalities and huge financial losses. The focus of this research is centred around two relevant natural hazards: heat stress and flooding. Preventing negative health impacts and deaths, as well as structural and monetary damage is the purpose of risk management and this requires citizens to adapt as well. Risk communication is implemented to foster people’s risk perception and motivate individual adaptation. However, methods of risk and crisis communication are often not evaluated in a structured manner. Much interdisciplinary research exists on both risk perception and adaptation, however, not much is known on the connection between the two. Furthermore, the existing research on risk communication is often not theory-driven and its impact on individual adaptation and risk perception is not thoroughly documented. This dissertation follows three research aims: (1) Compare psychological theories that contribute to natural hazard research. (2) Explore risk perception and adaptive behaviour by applying multiple methods. And (3) evaluate one risk communication method and one crisis communication method in a theory-driven manner to determine their impact on risk perception and adaptive behaviour. First, a literature review is provided on existing psychological theories which aim to explain the behaviour of individuals with regards to natural hazards. The three key theories included are the Protection Motivation Theory (PMT), the Protective Action Decision Model (PADM), and the Risk Information Seeking and Processing Model (RISP). Each of these are described and compared to each other with a focus on their explanatory power and practical significance in interdisciplinary research. Theoretical adaptations and possible extensions for future research are proposed for the presented approaches. Second, a multimethod field study on heat stress at an open-air event is presented. Face-to-face surveys (n = 306) and behavioural observations (n = 2750) were carried out at a horticultural show in Würzburg in summer 2018. The visitors’ risk perception, adaptive behaviour, and activity level were analysed and compared between hot days, summer days, and rainy days, applying correlation analyses, ANOVA, and multiple regression analyses. Heat risk perception was generally high, but most respondents were unaware of heat warnings on the day of their visit. During hot days the highest level of adaptation and lower activity levels were observed. Discrepancies between reported and observed adaptation emerged for different age groups.. Third, a telephone and web-based household survey on heat stress was conducted in the cities of Würzburg, Potsdam, and Remscheid in 2019 (n = 1417). The PADM served as the study’s theoretical framework. In multiple regression analyses the PADM factors of environmental and demographic context, risk communication, and psychological processes explained a substantial share of variance of protection motivation, protective response, and emotion-focused coping. Elements of crisis communication of a heat warning were evaluated experimentally. Results showed that understanding and adaptation intention was significantly higher in individuals that had received action recommendations alongside the heat warning. Fourth, the focus is set on a risk communication method of the flood context. A series of workshops on individual flood protection was carried out in six different settings. The participants (n = 115) answered a pretest-posttest questionnaire. Mixed-model analyses revealed significant increases in self-efficacy, subjective knowledge, and protection motivation. Stronger effects were observed in younger participants and those with lower levels of previous knowledge on flood adaptation as well as no flood experience. The findings of this thesis help to understand individual adaptation, as well as possible impacts of risk and crisis communication on risk perception and adaptation. The scientific background of this work is rooted in the disciplines of psychology and geosciences. The two theories PMT and PADM proved to be useful theoretical frameworks for the presented studies to suggest improvements in risk communication methods. A broad picture of individual adaptation is captured through a variety of methods of self-reports (face-to-face, telephone-based, web-based, and paper-pencil surveys) and behavioural observations, which recorded past and intended behaviour. Alongside with further methodological recommendations, the theory-driven evaluations of risk and crisis communication methods can serve as best-practice examples for future evaluation studies in natural hazard research but also other sciences dealing with risk behaviour to identify and improve effective risk communication pathways. N2 - Naturgefahren stellen eine ernsthafte Gefahr für Gesundheit und Leben dar. In Deutschland, wo die Untersuchungen dieser Dissertation durchgeführt wurden, sind in der jüngeren Vergangenheit verschiedene Wetterextreme aufgetreten, die zahlreiche Menschenleben gekostet und hohe finanzielle Schäden verursacht haben. Der Fokus dieser Arbeit liegt auf Hitzebelastung und Hochwasser. Die Vermeidung von Gesundheitsbelastungen, Todesfällen, strukturellen und monetären Schäden ist Aufgabe des Risikomanagements, welches auch individuelles Anpassungsverhalten von Bürger:innen umfasst. Risikokommunikation hat das Ziel, Risikowahrnehmung zu steigern und individuelle Anpassung zu motivieren. Allerdings wurden Methoden der Risiko- und auch Krisenkommunikation in bislang selten strukturiert evaluiert. Es existiert viel interdisziplinäre Forschung zu Risikowahrnehmung und Anpassung, jedoch ist wenig über den Zusammenhang beider Aspekte bekannt. Des Weiteren ist die bisherige Forschung zu Risikokommunikation selten theoriegeleitet und ihr Einfluss auf individuelle Anpassung und Risikowahrnehmung ist nicht systematisch untersucht. Diese Dissertation verfolgt drei Forschungsziele: (1) Psychologische Theorien, die einen Beitrag zur Naturrisikenforschung leisten (können), vergleichen, (2) Risikowahrnehmung und individuelle Anpassung mittels unterschiedlicher Methoden erforschen und (3) je eine Methode der Risiko- und der Krisenkommunikation theoriebasiert evaluieren und ihren Einfluss auf Risikowahrnehmung und Anpassungsverhalten bestimmen. Als Erstes werden psychologische Theorien vorgestellt, die, menschliches Verhalten im Zusammenhang mit Naturrisiken erklären. Der Fokus liegt dabei auf drei Theorien: der Protection Motivation Theory (PMT), dem Protective Action Decision Model (PADM), und dem Risk Information Seeking and Processing Model (RISP). Diese Theorien werden beschrieben und hinsichtlich ihrer Erklärungskraft und ihrer praktischen Bedeutung in der interdisziplinären Forschung verglichen. Anpassungen der vorgestellten Theorien und mögliche Erweiterungen für zukünftige Forschung werden vorgeschlagen. Als Zweites wird eine multimethodische Feldstudie vorgestellt. Im Rahmen der Landesgartenschau in Würzburg wurden im Sommer 2018 Befragungen (n = 306) und Verhaltensbeobachtungen (n = 2750) durchgeführt. Mithilfe von Korrelationsanalysen, ANOVAs und multiplen Regressionen wurden die Risikowahrnehmung, das Anpassungsverhalten und das Aktivitätsniveau von Besucher:innen an heißen Tagen, Sommertagen und Regentagen verglichen. Die Wahrnehmung von Hitzerisiko war allgemein hoch, jedoch wussten die meisten Befragten an Tagen mit einer aktuellen Hitzewarnung nicht über diese Warnung Bescheid. An heißen Tagen wurde das höchste Niveau an Anpassung und die niedrigste Aktivität beobachtet. Allerdings fanden sich Unterschiede zwischen selbstberichtetem und tatsächlich beobachtetem Anpassungsverhalten bei einigen Altersgruppen. Als Drittes wurde eine Haushaltsbefragung zum Thema Hitzebelastung durchgeführt, an der 2019 insgesamt 1417 Personen aus Würzburg, Potsdam und Remscheid per Telefon oder online teilnahmen. Das PADM stellt das theoretische Rahmenmodell dieser Untersuchung dar. Aus multiplen Regressionen konnte abgeleitet werden, dass die Umwelt- und demographischen Faktoren, Risikokommunikation und psychologische Prozesse des PADM substanzielle Varianzanteile der Schutzmotivation, des Schutzverhaltens und einer emotionalen Bewältigung erklärten. Elemente einer Hitzewarnung, die eine Methode der Krisenkommunikation darstellt, wurden experimentell verglichen. Es zeigte sich, dass die Bereitstellung zusätzlicher Handlungsinformationen im Rahmen der Warnung das Verständnis und die Anpassungsabsicht signifikant steigerte. Als Viertes wurde der Fokus auf eine Methode der Hochwasserrisikokommunikation gelegt. Insgesamt wurden sechs Workshops zu privaten Hochwasserschutzmaßnahmen durchgeführt. Zur Evaluation füllten die Teilnehmenden (n = 115) einen Vorher-Nachher-Fragebogen aus. Analysen zeigten signifikante Anstiege in Selbstwirksamkeit, subjektivem Wissen und Schutzmotivation. Für jüngere Teilnehmende und solche mit geringerem Vorwissen und ohne Hochwassererfahrung waren die Effekte des Workshops am stärksten. Die Ergebnisse dieser Dissertation helfen, individuelle Anpassung und mögliche Einflüsse von Risiko- und Krisenkommunikation auf Risikowahrnehmung und Anpassung besser zu verstehen. Der wissenschaftliche Hintergrund dieser Arbeit liegt in der Psychologie und den Geowissenschaften. Die beiden angewandten Theorien PMT und PADM erwiesen sich als hilfreiche theoretische Rahmenmodelle der vorgestellten Studien, um praktische Verbesserungen von Kommunikationen vorzuschlagen. Ein breites Bild vergangener und intendierter individueller Anpassung wurde mittels Befragungsmethoden (persönlich, telefonisch, online und in Papierform) und der Verhaltensbeobachtung gezeichnet. Zusammen mit methodischen Empfehlungen können die theoriebasierten Risiko- und Krisenkommunikationsevaluationen als Best-Practice-Beispiel für kommende Evaluationen in der (Natur-)Risikoforschung dienen und effektive Risikokommunikationswege identifizieren und stetig verbessern.  KW - Risk Behaviour KW - Crisis Communication KW - Climate Change Adaptation KW - Environmental Psychology KW - Model Comparison KW - Risikoverhalten KW - Krisenkommunikation KW - Klimawandelanpassung KW - Umweltpsychologie KW - Modellvergleich Y1 - 2022 ER - TY - THES A1 - Schumacher, Juliane T1 - Die Regierung des Waldes BT - Klimawandel, Kohlenstoffmärkte und neoliberale Naturen in Marokko T2 - Sozial- und Kulturgeographie N2 - Wie verändert sich die Beziehung von Gesellschaften zu ihrer natürlichen Umgebung über die Zeit? Wie werden natürliche Systeme »in Wert« gesetzt? Und welchen Einfluss hat das auf die von uns so bezeichnete »Natur«? Am Beispiel eines Korkeichenwaldes in Marokko geht Juliane Schumacher diesen Fragen nach. Unter Bezugnahme auf Ansätze der Politischen Ökologie, der Science and Technology Studies und Foucaults Gouvernementalitätsanalyse zeigt sie, wie sich seit der Kolonialzeit die Bewirtschaftung des Waldes verändert hat. Dabei wird deutlich, wie Programme zur Integration der Wälder in globale Finanz- und Kohlenstoffmärkte zu neuen, experimentellen Formen der »Regierung des Waldes« führen. KW - Politische Ökologie KW - Nordafrika KW - Wald KW - Klimawandel KW - Neoliberale Natur KW - Science and Technology Studies KW - Gouvernementalität Y1 - 2022 SN - 978-3-8376-6151-4 SN - 978-3-8394-6151-8 U6 - https://doi.org/10.1515/9783839461518 SN - 2703-1640 SN - 2703-1659 IS - 50 PB - transcript CY - Bielefeld ER - TY - THES A1 - Kemter, Matthias T1 - River floods in a changing world T1 - Flusshochwasser in einer sich ändernden Welt N2 - River floods are among the most devastating natural hazards worldwide. As their generation is highly dependent on climatic conditions, their magnitude and frequency are projected to be affected by future climate change. Therefore, it is crucial to study the ways in which a changing climate will, and already has, influenced flood generation, and thereby flood hazard. Additionally, it is important to understand how other human influences - specifically altered land cover - affect flood hazard at the catchment scale. The ways in which flood generation is influenced by climatic and land cover conditions differ substantially in different regions. The spatial variability of these effects needs to be taken into account by using consistent datasets across large scales as well as applying methods that can reflect this heterogeneity. Therefore, in the first study of this cumulative thesis a complex network approach is used to find 10 clusters of similar flood behavior among 4390 catchments in the conterminous United States. By using a consistent set of 31 hydro-climatological and land cover variables, and training a separate Random Forest model for each of the clusters, the regional controls on flood magnitude trends between 1960-2010 are detected. It is shown that changes in rainfall are the most important drivers of these trends, while they are regionally controlled by land cover conditions. While climate change is most commonly associated with flood magnitude trends, it has been shown to also influence flood timing. This can lead to trends in the size of the area across which floods occur simultaneously, the flood synchrony scale. The second study is an analysis of data from 3872 European streamflow gauges and shows that flood synchrony scales have increased in Western Europe and decreased in Eastern Europe. These changes are attributed to changes in flood generation, especially a decreasing relevance of snowmelt. Additionally, the analysis shows that both the absolute values and the trends of flood magnitudes and flood synchrony scales are positively correlated. If these trends persist in the future and are not accounted for, the combined increases of flood magnitudes and flood synchrony scales can exceed the capacities of disaster relief organizations and insurers. Hazard cascades are an additional way through which climate change can influence different aspects of flood hazard. The 2019/2020 wildfires in Australia, which were preceded by an unprecedented drought and extinguished by extreme rainfall that led to local flooding, present an opportunity to study the effects of multiple preceding hazards on flood hazard. All these hazards are individually affected by climate change, additionally complicating the interactions within the cascade. By estimating and analyzing the burn severity, rainfall magnitude, soil erosion and stream turbidity in differently affected tributaries of the Manning River catchment, the third study shows that even low magnitude floods can pose a substantial hazard within a cascade. This thesis shows that humanity is affecting flood hazard in multiple ways with spatially and temporarily varying consequences, many of which were previously neglected (e.g. flood synchrony scale, hazard cascades). To allow for informed decision making in risk management and climate change adaptation, it will be crucial to study these aspects across the globe and to project their trajectories into the future. The presented methods can depict the complex interactions of different flood drivers and their spatial variability, providing a basis for the assessment of future flood hazard changes. The role of land cover should be considered more in future flood risk modelling and management studies, while holistic, transferable frameworks for hazard cascade assessment will need to be designed. N2 - Flusshochwasser gehören zu den verheerendsten Naturkatastrophen weltweit. Ihre Entstehung hängt von klimatischen Bedingungen ab, weshalb vorhergesagt wird, dass sich ihre Magnituden und Häufigkeit durch den Klimawandel ändern werden. Daher ist es notwendig zu untersuchen, auf welche Art sich ein verändertes Klima - auch im Vergleich mit Effekten durch Landbedeckungsänderungen - auf Hochwasserentstehung und -gefahr auswirken könnte und das bereits getan hat. Diese kumulative Arbeit beleuchtet drei Teilaspekte dieses Themas. In der ersten Studie werden mittels maschinellen Lernens die wichtigsten Variablen entdeckt und untersucht, die die Änderungen von Hochwassermagnituden in 4390 Einzugsgebieten in den USA von 1960-2010 kontrolliert haben. Es wird gezeigt, dass Änderungen der Regenmengen der entscheidende Faktor waren, während Landnutzung regional von großer Bedeutung war. Die zweite Studie untersucht von 1960-2010 Änderungen in der Distanz innerhalb welcher Hochwasser in verschiedenen Flüssen gleichzeitig auftreten. Daten von 3872 europäischen Flusspegeln zeigen, dass sich die Fläche der gleichzeitigen Überflutung in Westeuropa vergrößert und in Osteuropa verkleinert hat, was auf abnehmende Relevanz der Schneeschmelze bei der Hochwasserentstehung zurückzuführen ist. Die dritte Studie behandelt die Auswirkungen kaskadierender Naturkatastrophen auf Hochwasser am Beispiel der australischen Waldbrände 2019/2020. Die Untersuchung der verschieden stark betroffenen Nebenflüsse des Manning River zeigt, dass in einer Naturgefahrenkaskade selbst gewöhnliche Hochwasser substantielle Auswirkungen haben können. Diese Arbeit zeigt, dass die Menschheit Hochwassergefahren auf verschiedene Arten und mit räumlich sowie zeitlich variablen Resultaten beeinflusst. Diese Aspekte müssen zukünftig global näher untersucht und ihre Entwicklung für die Zukunft modelliert werden, um fundierte Entscheidungen in Hochwasserschutz treffen zu können. Für Hochwassermagnituden und die Fläche gleichzeitiger Überflutung können hierfür die präsentierten Methoden adaptiert werden. KW - hydrology KW - climate change KW - flood KW - Hydrologie KW - Klimawandel KW - Hochwasser Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558564 ER -