TY - THES A1 - Bookhagen, Bodo T1 - Late quaternary climate changes and landscape evolution in the Northwest Himalaya : geomorphologic processes in the Indian Summer Monsoon Domain N2 - The India-Eurasia continental collision zone provides a spectacular example of active mountain building and climatic forcing. In order to quantify the critically important process of mass removal, I analyzed spatial and temporal precipitation patterns of the oscillating monsoon system and their geomorphic imprints. I processed passive microwave satellite data to derive high-resolution rainfall estimates for the last decade and identified an abnormal monsoon year in 2002. During this year, precipitation migrated far into the Sutlej Valley in the northwestern part of the Himalaya and reached regions behind orographic barriers that are normally arid. There, sediment flux, mean basin denudation rates, and channel-forming processes such as erosion by debris-flows increased significantly. Similarly, during the late Pleistocene and early Holocene, solar forcing increased the strength of the Indian summer monsoon for several millennia and presumably lead to analogous precipitation distribution as were observed during 2002. However, the persistent humid conditions in the steep, high-elevation parts of the Sutlej River resulted in deep-seated landsliding. Landslides were exceptionally large, mainly due to two processes that I infer for this time: At the onset of the intensified monsoon at 9.7 ka BP heavy rainfall and high river discharge removed material stored along the river, and lowered the baselevel. Second, enhanced discharge, sediment flux, and increased pore-water pressures along the hillslopes eventually lead to exceptionally large landslides that have not been observed in other periods. The excess sediments that were removed from the upstream parts of the Sutlej Valley were rapidly deposited in the low-gradient sectors of the lower Sutlej River. Timing of downcutting correlates with centennial-long weaker monsoon periods that were characterized by lower rainfall. I explain this relationship by taking sediment flux and rainfall dynamics into account: High sediment flux derived from the upstream parts of the Sutlej River during strong monsoon phases prevents fluvial incision due to oversaturation the fluvial sediment-transport capacity. In contrast, weaker monsoons result in a lower sediment flux that allows incision in the low-elevation parts of the Sutlej River. N2 - Die Indisch-Eurasische Kontinentalkollision ist ein beeindruckendes Beispiel für weitreichenden, tektonisch kontrollierten klimatischen Einfluss. Um den Einfluss von klimatisch bedingter Erosion auf die Orogenese zu testen, habe ich erosive Oberflächenprozesse, Monsunvariationen und fluviatilen Massentransfer auf verschiedenen Zeitscheiben analysiert. Um genaue Niederschläge auf einem grossen Raum zu quantifizieren, habe ich durch Wettersatelliten aufgezeichnete passive Mikrowellendaten für die letzten zehn Jahre untersucht. Erstaunlicherweise variiert der Niederschlag nur wenig von Jahr zu Jahr und ein Großteil des Regens wird durch orographische Effekte gesteuert. Im Jahre 2002 allerdings, habe ich ein abnormal starkes Monsunjahr feststellen können. Zu dieser Zeit ist der Monsunniederschlag weiter in das Gebirge vorgedrungen und hat viele Massenbewegungen wie z.B. Schuttströme und Muren ausgelöst. Dabei verdoppelten sich die Erosionsraten im Einzugsgebiet. Ich zeige anhand von Satellitenbildern, aufgenommen vor und nach dem Monsun, dass sich hierbei vor allen Dingen kleine, neue Flußläufe entwickeln. In höher gelegenen, normalerweise trockenen Gebieten findet man auch Überreste von enormen Bergstürzen und dahinter aufgestauten Seen. Datierungen dieser geomorphologischen Phänomene zeigen, dass sie nur in zwei Phasen während der letzten 30.000 Jahre auftreten: Im späten Pleistozän vor rund 27.000 Jahren und im frühen Holozän vor 8000 Jahre. Diese Zeiten sind durch einen starken Monsun, der durch die Insolation kontrolliert wird, gekennzeichnet. Analog zur Niederschlagsverteilung im Jahre 2002 ist der Monsun aber nicht nur für ein Jahr, sondern mehrere hundert oder tausend Jahre lang kontinuierlich in die heute ariden Gebiete vorgedrungen. Der erhöhte Porenwasserdruck und die erstarkten Flüsse lösten dann durch laterale Unterschneidung große Bergstürze aus, die zu keiner anderen Zeit beobachtet wurden. Die temporären Becken in den Hochlagen, die durch Bergstürze entstanden sind, entstehen in Feuchtphasen und werden in schwächeren Monsunphasen von Flüssen abgetragen und verdeutlicht die komplexe Beziehung zwischen Klima und Massentransfer verdeutlicht. ---- Anmerkung: Der Autor wurde 2005 mit dem 7. Publikationspreis des Leibniz-Kollegs Potsdam für Nachwuchswissenschaftler/innen in Naturwissenschaften ausgezeichnet. T2 - Late quaternary climate changes and landscape evolution in the Northwest Himalaya : geomorphologic processes in the Indian Summer Monsoon Domain KW - Monsun KW - Himalaja KW - Klima KW - Indien KW - Bergstürze KW - Geomorphologie KW - Asian monsoon KW - Himalaya KW - climate KW - landslides KW - geomorphology Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001956 ER - TY - GEN A1 - Brieger, Frederic A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Bookhagen, Bodo A1 - Zakharov, Evgenii S. A1 - Kruse, Stefan T1 - Advances in the derivation of Northeast Siberian forest metrics using high-resolution UAV-based photogrammetric point clouds T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra–taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE%) for tree heights (mean R2 = 0.77, mean RMSE% = 18.46%) than for crown diameters (mean R2 = 0.46, mean RMSE% = 24.9%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra–taiga ecotone should be adapted to the forest structure and have a radius of >15–20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest’s stand structure. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1337 KW - UAV KW - photogrammetry KW - remote sensing KW - structure from motion KW - tundra–taiga ecotone KW - point cloud KW - forest structure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473318 SN - 1866-8372 IS - 1337 ER - TY - GEN A1 - Jobe, Jessica Ann Thompson A1 - Li, Tao A1 - Bookhagen, Bodo A1 - Chen, Jie A1 - Burbank, Douglas W. T1 - Dating growth strata and basin fill by combining 26Al/10Be burial dating and magnetostratigraphy BT - constraining active deformation in the Pamir–Tian Shan convergence zone, NW China T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1044 KW - thrust belts KW - Tarim Basin KW - cosmogenic AL-26 KW - production rates KW - foreland basin KW - erosion rates KW - deep crust KW - half-life KW - NE Pamir KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468067 SN - 1866-8372 IS - 1044 SP - 806 EP - 828 ER - TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau N2 - In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000m of elevation. For the 30m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12m TanDEM-X and 5m ALOSWorld 3D having < 2m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12–30 m), and ALOS World 3D (5–30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10m DEMs and the 30m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30m SRTM-C, 12–30m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X, and 5m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m=n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5m ALOS World 3D DEM, which demonstrated high-frequency noise in 2–8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 338 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396277 ER - TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Beyond Vertical Point Accuracy BT - Assessing Inter-pixel Consistency in 30 m Global DEMs for the Arid Central Andes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Quantitative geomorphic research depends on accurate topographic data often collected via remote sensing. Lidar, and photogrammetric methods like structure-from-motion, provide the highest quality data for generating digital elevation models (DEMs). Unfortunately, these data are restricted to relatively small areas, and may be expensive or time-consuming to collect. Global and near-global DEMs with 1 arcsec (∼30 m) ground sampling from spaceborne radar and optical sensors offer an alternative gridded, continuous surface at the cost of resolution and accuracy. Accuracy is typically defined with respect to external datasets, often, but not always, in the form of point or profile measurements from sources like differential Global Navigation Satellite System (GNSS), spaceborne lidar (e.g., ICESat), and other geodetic measurements. Vertical point or profile accuracy metrics can miss the pixel-to-pixel variability (sometimes called DEM noise) that is unrelated to true topographic signal, but rather sensor-, orbital-, and/or processing-related artifacts. This is most concerning in selecting a DEM for geomorphic analysis, as this variability can affect derivatives of elevation (e.g., slope and curvature) and impact flow routing. We use (near) global DEMs at 1 arcsec resolution (SRTM, ASTER, ALOS, TanDEM-X, and the recently released Copernicus) and develop new internal accuracy metrics to assess inter-pixel variability without reference data. Our study area is in the arid, steep Central Andes, and is nearly vegetation-free, creating ideal conditions for remote sensing of the bare-earth surface. We use a novel hillshade-filtering approach to detrend long-wavelength topographic signals and accentuate short-wavelength variability. Fourier transformations of the spatial signal to the frequency domain allows us to quantify: 1) artifacts in the un-projected 1 arcsec DEMs at wavelengths greater than the Nyquist (twice the nominal resolution, so > 2 arcsec); and 2) the relative variance of adjacent pixels in DEMs resampled to 30-m resolution (UTM projected). We translate results into their impact on hillslope and channel slope calculations, and we highlight the quality of the five DEMs. We find that the Copernicus DEM, which is based on a carefully edited commercial version of the TanDEM-X, provides the highest quality landscape representation, and should become the preferred DEM for topographic analysis in areas without sufficient coverage of higher-quality local DEMs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1242 KW - DEM noise KW - Fourier analysis KW - TanDEM-X KW - ASTER GDEM KW - Copernicus DEM KW - WorldDEM KW - SRTM KW - ALOS World 3D Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549805 SN - 1866-8372 SP - 1 EP - 24 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Introducing PebbleCounts BT - a grain-sizing tool for photo surveys of dynamic gravel-bed rivers T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Grain-size distributions are a key geomorphic metric of gravel-bed rivers. Traditional measurement methods include manual counting or photo sieving, but these are achievable only at the 1–10 ㎡ scale. With the advent of drones and increasingly high-resolution cameras, we can now generate orthoimagery over hectares at millimeter to centimeter resolution. These scales, along with the complexity of high-mountain rivers, necessitate different approaches for photo sieving. As opposed to other image segmentation methods that use a watershed approach, our open-source algorithm, PebbleCounts, relies on k-means clustering in the spatial and spectral domain and rapid manual selection of well-delineated grains. This improves grain-size estimates for complex riverbed imagery, without post-processing. We also develop a fully automated method, PebbleCountsAuto, that relies on edge detection and filtering suspect grains, without the k-means clustering or manual selection steps. The algorithms are tested in controlled indoor conditions on three arrays of pebbles and then applied to 12 × 1 ㎡ orthomosaic clips of high-energy mountain rivers collected with a camera-on-mast setup (akin to a low-flying drone). A 20-pixel b-axis length lower truncation is necessary for attaining accurate grain-size distributions. For the k-means PebbleCounts approach, average percentile bias and precision are 0.03 and 0.09 ψ, respectively, for ∼1.16 mm pixel⁻¹ images, and 0.07 and 0.05 ψ for one 0.32 mm pixel⁻¹ image. The automatic approach has higher bias and precision of 0.13 and 0.15 ψ, respectively, for ∼1.16 mm pixel⁻¹ images, but similar values of −0.06 and 0.05 ψ for one 0.32 mm pixel⁻¹ image. For the automatic approach, only at best 70 % of the grains are correct identifications, and typically around 50 %. PebbleCounts operates most effectively at the 1 ㎡ patch scale, where it can be applied in ∼5–10 min on many patches to acquire accurate grain-size data over 10–100 ㎡ areas. These data can be used to validate PebbleCountsAuto, which may be applied at the scale of entire survey sites (102–104 ㎡ ). We synthesize results and recommend best practices for image collection, orthomosaic generation, and grain-size measurement using both algorithms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 783 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439468 SN - 1866-8372 IS - 783 ER - TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼ 2015) in the south-central Andes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In the arctic and high mountains it is common to measure vertical changes of ice sheets and glaciers via digital elevation model (DEM) differencing. This requires the signal of change to outweigh the noise associated with the datasets. Excluding large landslides, on the ice-free earth the land-level change is smaller in vertical magnitude and thus requires more accurate DEMs for differencing and identification of change. Previously, this has required meter to submeter data at small spatial scales. Following careful corrections, we are able to measure land-level changes in gravel-bed channels and steep hillslopes in the south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010 to 2015) near-global 12–30m DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying cosine-fit co-registration to remove ∼ 1∕10 pixel (∼ 3m) shifts, fast Fourier transform (FFT) and filtering to remove SRTM-C short- and long-wavelength stripes, and blocked shifting to remove remaining complex biases. The datasets are then differenced and outlier pixels are identified as a potential signal for the case of gravel-bed channels and hillslopes. We are able to identify signals of incision and aggradation (with magnitudes down to ∼ 3m in the best case) in two  > 100km river reaches, with increased geomorphic activity downstream of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5m (up to  > 10m for large piles). These values correspond to conservative average rates of 0.2 to > 0.5myr−1 for vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able to identify one major landslide in the study area with a deposit volume of 16±0.15×106m3. Additional signals of change can be garnered from TanDEM-X auxiliary layers; however, these are more difficult to quantify. The methods presented can be extended to any region of the world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest, with the caveat that remaining vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 480 KW - Digital Elevation Models KW - Glacier Mass Balances KW - Structure-from-motion KW - Accuracy Assessment KW - NW Argentina KW - Nevado Coropuna KW - Sediment Flux KW - Gravel-bed KW - River Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-420487 IS - 480 ER - TY - GEN A1 - Ramezani Ziarani, Maryam A1 - Bookhagen, Bodo A1 - Schmidt, Torsten A1 - Wickert, Jens A1 - de la Torre, Alejandro A1 - Deng, Zhiguo A1 - Calori, Andrea T1 - A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF’s (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1172 KW - Global Navigation Satellite System (GNSS) KW - GNSS-integrated water vapour KW - convective available potential energy (CAPE) KW - extreme rainfall KW - TRMM Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523256 SN - 1866-8372 IS - 1172 ER - TY - GEN A1 - Ramezani Ziarani, Maryam A1 - Bookhagen, Bodo A1 - Schmidt, Torsten A1 - Wickert, Jens A1 - de la Torre, Alejandro A1 - Hierro, Rodrigo T1 - Using Convective Available Potential Energy (CAPE) and Dew-Point Temperature to Characterize Rainfall-Extreme Events in the South-Central Andes T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The interactions between atmosphere and steep topography in the eastern south–central Andes result in complex relations with inhomogenous rainfall distributions. The atmospheric conditions leading to deep convection and extreme rainfall and their spatial patterns—both at the valley and mountain-belt scales—are not well understood. In this study, we aim to identify the dominant atmospheric conditions and their spatial variability by analyzing the convective available potential energy (CAPE) and dew-point temperature (Td). We explain the crucial effect of temperature on extreme rainfall generation along the steep climatic and topographic gradients in the NW Argentine Andes stretching from the low-elevation eastern foreland to the high-elevation central Andean Plateau in the west. Our analysis relies on version 2.0 of the ECMWF’s (European Centre for Medium-RangeWeather Forecasts) Re-Analysis (ERA-interim) data and TRMM (Tropical Rainfall Measuring Mission) data. We make the following key observations: First, we observe distinctive gradients along and across strike of the Andes in dew-point temperature and CAPE that both control rainfall distributions. Second, we identify a nonlinear correlation between rainfall and a combination of dew-point temperature and CAPE through a multivariable regression analysis. The correlation changes in space along the climatic and topographic gradients and helps to explain controlling factors for extreme-rainfall generation. Third, we observe more contribution (or higher importance) of Td in the tropical low-elevation foreland and intermediate-elevation areas as compared to the high-elevation central Andean Plateau for 90th percentile rainfall. In contrast, we observe a higher contribution of CAPE in the intermediate-elevation area between low and high elevation, especially in the transition zone between the tropical and subtropical areas for the 90th percentile rainfall. Fourth, we find that the parameters of the multivariable regression using CAPE and Td can explain rainfall with higher statistical significance for the 90th percentile compared to lower rainfall percentiles. Based on our results, the spatial pattern of rainfall-extreme events during the past ∼16 years can be described by a combination of dew-point temperature and CAPE in the south–central Andes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 771 KW - eastern south–central Andes KW - extreme rainfall KW - deep convection KW - convective available potential energy KW - dew-point temperature Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438865 SN - 1866-8372 IS - 771 ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987–2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987–1997, to much more positive trends across large regions of HMA during the periods 1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1020 KW - snow KW - glacier KW - climate change KW - passive microwave KW - special sensor microwave imager KW - special sensor microwave imager/sounder Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484176 SN - 1866-8372 IS - 1020 ER -