TY - JOUR A1 - Pudell, Jan-Etienne A1 - Reppert, Alexander von A1 - Schick, D. A1 - Zamponi, F. A1 - Rössle, Matthias A1 - Herzog, Marc A1 - Zabel, Hartmut A1 - Bargheer, Matias T1 - Ultrafast negative thermal expansion driven by spin disorder JF - Physical review : B, Condensed matter and materials physics N2 - We measure the transient strain profile in a nanoscale multilayer system composed of yttrium, holmium, and niobium after laser excitation using ultrafast x-ray diffraction. The strain propagation through each layer is determined by transient changes in the material-specific Bragg angles. We experimentally derive the exponentially decreasing stress profile driving the strain wave and show that it closely matches the optical penetration depth. Below the Neel temperature of Ho, the optical excitation triggers negative thermal expansion, which is induced by a quasi-instantaneous contractive stress and a second contractive stress contribution increasing on a 12-ps timescale. These two timescales were recently measured for the spin disordering in Ho [Rettig et al., Phys. Rev. Lett. 116, 257202 (2016)]. As a consequence, we observe an unconventional bipolar strain pulse with an inverted sign traveling through the heterostructure. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.99.094304 SN - 2469-9950 SN - 2469-9969 VL - 99 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Clark, Oliver J. A1 - Wadgaonkar, Indrajit A1 - Freyse, Friedrich A1 - Springholz, Gunther A1 - Battiato, Marco A1 - Sanchez-Barriga, Jaime T1 - Ultrafast thermalization pathways of excited bulk and surface states in the ferroelectric rashba semiconductor GeTe JF - Advanced materials N2 - A large Rashba effect is essential for future applications in spintronics. Particularly attractive is understanding and controlling nonequilibrium properties of ferroelectric Rashba semiconductors. Here, time- and angle-resolved photoemission is utilized to access the ultrafast dynamics of bulk and surface transient Rashba states after femtosecond optical excitation of GeTe. A complex thermalization pathway is observed, wherein three different timescales can be clearly distinguished: intraband thermalization, interband equilibration, and electronic cooling. These dynamics exhibit an unconventional temperature dependence: while the cooling phase speeds up with increasing sample temperature, the opposite happens for interband thermalization. It is demonstrated how, due to the Rashba effect, an interdependence of these timescales on the relative strength of both electron-electron and electron-phonon interactions is responsible for the counterintuitive temperature dependence, with spin-selection constrained interband electron-electron scatterings found both to dominate dynamics away from the Fermi level, and to weaken with increasing temperature. These findings are supported by theoretical calculations within the Boltzmann approach explicitly showing the opposite behavior of all relevant electron-electron and electron-phonon scattering channels with temperature, thus confirming the microscopic mechanism of the experimental findings. The present results are important for future applications of ferroelectric Rashba semiconductors and their excitations in ultrafast spintronics. KW - ferroelectric semiconductors KW - Rashba effect KW - spin- and angle-resolved photoemission KW - spin-orbit coupling KW - time-resolved photoemission KW - ultrafast dynamics Y1 - 2022 U6 - https://doi.org/10.1002/adma.202200323 SN - 0935-9648 SN - 1521-4095 VL - 34 IS - 24 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Bodrova, Anna S. T1 - Ultraslow scaled Brownian motion JF - New journal of physics : the open-access journal for physics N2 - We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations. KW - anomalous diffusion KW - stochastic processes KW - ageing Y1 - 2015 U6 - https://doi.org/10.1088/1367-2630/17/6/063038 SN - 1367-2630 VL - 17 IS - 063038 PB - Dt. Physikalische Ges., IOP CY - Bad Honnef, London ER - TY - JOUR A1 - Cheng, Xin A1 - Kliem, Bernhard A1 - Ding, Mingde T1 - Unambiguous evidence of filament splitting-induced partial eruptions JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter. KW - Sun: magnetic fields KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aab08d SN - 0004-637X SN - 1538-4357 VL - 856 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Reppert, Alexander von A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Zeuschner, Steffen Peer A1 - Dumesnil, Karine A1 - Bargheer, Matias T1 - Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer JF - Structural Dynamics N2 - Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses. KW - Strain measurement KW - Photoexcitations KW - Crystal lattices KW - Femtosecond lasers KW - Thermal effects KW - Heterostructures KW - Ultrafast X-rays KW - Phonons Y1 - 2020 U6 - https://doi.org/10.1063/1.5145315 SN - 2329-7778 VL - 7 IS - 024303 PB - AIP Publishing LLC CY - Melville, NY ER - TY - JOUR A1 - Bodrova, Anna S. A1 - Chechkin, Aleksei V. A1 - Cherstvy, Andrey G. A1 - Safdari, Hadiseh A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Underdamped scaled Brownian motion BT - (non-)existence of the overdamped limit in anomalous diffusion JF - Scientific reports N2 - It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases. Y1 - 2016 U6 - https://doi.org/10.1038/srep30520 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Warby, Jonathan A1 - Zu, Fengshuo A1 - Zeiske, Stefan A1 - Gutierrez-Partida, Emilio A1 - Frohloff, Lennart A1 - Kahmann, Simon A1 - Frohna, Kyle A1 - Mosconi, Edoardo A1 - Radicchi, Eros A1 - Lang, Felix A1 - Shah, Sahil A1 - Pena-Camargo, Francisco A1 - Hempel, Hannes A1 - Unold, Thomas A1 - Koch, Norbert A1 - Armin, Ardalan A1 - De Angelis, Filippo A1 - Stranks, Samuel D. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Understanding performance limiting interfacial recombination in pin Perovskite solar cells JF - Advanced energy materials N2 - Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells. KW - C60 KW - defects KW - interface recombination KW - loss mechanisms KW - perovskites KW - solar cells Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202103567 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, Efthymios A1 - Mohr, Gunther A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni A1 - Čapek, Jan T1 - Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718 JF - Journal of materials science N2 - The manufacturability of metallic alloys using laser-based additive manufacturing methods such as laser powder bed fusion has substantially improved within the last decade. However, local melting and solidification cause hierarchically structured and crystallographically textured microstructures possessing large residual stress. Such microstructures are not only the origin of mechanical anisotropy but also pose metrological challenges for the diffraction-based residual stress determination. Here we demonstrate the influence of the build orientation and the texture on the microstructure and consequently the mechanical anisotropy of as-built Inconel 718. For this purpose, we manufactured specimens with [001]/[011]-, [001]- and [011]/[11 (1) over bar]-type textures along their loading direction. In addition to changes in the Young's moduli, the differences in the crystallographic textures result in variations of the yield and ultimate tensile strengths. With this in mind, we studied the anisotropy on the micromechanical scale by subjecting the specimens to tensile loads along the different texture directions during in situ neutron diffraction experiments. In this context, the response of multiple lattice planes up to a tensile strain of 10% displayed differences in the load partitioning and the residual strain accumulation for the specimen with [011]/[(1) over bar 11]-type texture. However, the relative behavior of the specimens possessing an [001] /[011]- and [001]-type texture remained qualitatively similar. The consequences on the metrology of residual stress determination methods are discussed. Y1 - 2022 U6 - https://doi.org/10.1007/s10853-022-07499-9 SN - 0022-2461 SN - 1573-4803 VL - 57 IS - 31 SP - 15036 EP - 15058 PB - Springer CY - New York ER - TY - JOUR A1 - Perdigón-Toro, Lorena A1 - Le Quang Phuong, A1 - Eller, Fabian A1 - Freychet, Guillaume A1 - Saglamkaya, Elifnaz A1 - Khan, Jafar A1 - Wei, Qingya A1 - Zeiske, Stefan A1 - Kroh, Daniel A1 - Wedler, Stefan A1 - Koehler, Anna A1 - Armin, Ardalan A1 - Laquai, Frederic A1 - Herzig, Eva M. A1 - Zou, Yingping A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Understanding the role of order in Y-series non-fullerene solar cells to realize high open-circuit voltages JF - Advanced energy materials N2 - Non-fullerene acceptors (NFAs) as used in state-of-the-art organic solar cells feature highly crystalline layers that go along with low energetic disorder. Here, the crucial role of energetic disorder in blends of the donor polymer PM6 with two Y-series NFAs, Y6, and N4 is studied. By performing temperature-dependent charge transport and recombination studies, a consistent picture of the shape of the density of state distributions for free charges in the two blends is developed, allowing an analytical description of the dependence of the open-circuit voltage V-OC on temperature and illumination intensity. Disorder is found to influence the value of the V-OC at room temperature, but also its progression with temperature. Here, the PM6:Y6 blend benefits substantially from its narrower state distributions. The analysis also shows that the energy of the equilibrated free charge population is well below the energy of the NFA singlet excitons for both blends and possibly below the energy of the populated charge transfer manifold, indicating a down-hill driving force for free charge formation. It is concluded that energetic disorder of charge-separated states has to be considered in the analysis of the photovoltaic properties, even for the more ordered PM6:Y6 blend. KW - energetic disorder KW - non-fullerene acceptors KW - open-circuit voltage KW - organic solar cells Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202103422 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Prietzel, Claudia Christina A1 - Thünemann, Andreas F. A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Undulated Gold Nanoplatelet Superstructures BT - In Situ Growth of Hemispherical Gold Nanoparticles onto the Surface of Gold Nanotriangles JF - Langmuir N2 - Negatively charged flat gold nanotriangles, formed in a vesicular template phase and separated by an AOT-micelle-based depletion flocculation, were reloaded by adding a cationic polyelectrolyte, that is, a hyperbranched polyethylenimine (PEI). Heating the system to 100 degrees C in the presence of a gold chloride solution, the reduction process leads to the formation of gold nanoparticles inside the polymer shell surrounding the nanoplatelets. The gold nanoparticle formation is investigated by UV-vis spectroscopy, small-angle X-ray scattering, and dynamic light scattering measurements in combination with transmission electron microscopy. Spontaneously formed gold clusters in the hyperbranched PEI shell with an absorption maximum at 350 nm grow on the surface of the nanotriangles as hemispherical particles with diameters of similar to 6 nm. High-resolution micrographs show that the hemispherical gold particles are crystallized onto the {111} facets on the bottom and top of the platelet as well as on the edges without a grain boundary. Undulated gold nanoplatelet superstructures with special properties become available, which show a significantly modified performance in SERS-detected photocatalysis regarding both reactivity and enhancement factor. Y1 - 2018 U6 - https://doi.org/10.1021/acs.langmuir.7b02898 SN - 0743-7463 VL - 34 IS - 15 SP - 4584 EP - 4594 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wang, Jingwen A1 - Rychkov, Dmitry A1 - Nguyen, Quyet Doan A1 - Gerhard, Reimund T1 - Unexpected bipolar space-charge polarization across transcrystalline interfaces in polypropylene electret films JF - Journal of applied physics N2 - A double-layer transcrystalline polypropylene (PP) film with a flat central interface layer between its two transcrystalline layers is obtained by recrystallization from the melt between two polytetrafluoroethylene (PTFE) surfaces on both sides of the PP film. Its electret properties are studied and compared with those of a single-layer transcrystalline PP film re-crystallized in contact with only one PTFE surface. Within experimental uncertainty, the two types of transcrystalline films exhibit the same thermal properties and crystallinities. After thermal poling, however, two hetero-charge layers of opposite polarity are found on the internal interfaces of the double-layer transcrystalline films and may together be considered as micrometer-sized dipoles. The unexpected phenomenon does not occur in single-layer transcrystalline samples without a central interface layer, suggesting that the interfaces between the transcrystalline layers and the micrometer-thick central interface layer may be the origin of deeper traps rather than the crystalline structures in the transcrystallites or the spherulites. The origin of the interfacial charges was also studied by means of an injection-blocking charging method, which revealed that intrinsic charge carriers introduced during recrystallization are most likely responsible for the interfacial charges. It is fascinating that a material as familiar as PP can exhibit such intriguing properties with a special bipolar space-charge polarization across the central interface layer after quasi-epitaxial surface moulding into a double-layer transcrystalline form. In addition to applications in electret (micro-)devices for electro-mechanical transduction, the highly ordered structures may also be employed as a new paradigm for studying charge storage and transport in polymer electrets and in dielectrics for DC electrical insulation. Y1 - 2020 U6 - https://doi.org/10.1063/5.0022071 SN - 0021-8979 SN - 1089-7550 VL - 128 IS - 13 PB - American Institute of Physics, AIP CY - Melville, NY ER - TY - JOUR A1 - Wang, Wei A1 - Seno, Flavio A1 - Sokolov, Igor M. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Unexpected crossovers in correlated random-diffusivity processes JF - New Journal of Physics N2 - The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion. KW - diffusion KW - anomalous diffusion KW - non-Gaussianity KW - fractional Brownian motion Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/aba390 SN - 1367-2630 VL - 22 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - JOUR A1 - Uola, Roope A1 - Lever, Fabiano A1 - Gühne, Otfried A1 - Pellonpaa, Juha-Pekka T1 - Unified picture for spatial, temporal, and channel steering JF - Physical review : A, Atomic, molecular, and optical physics N2 - Quantum steering describes how local actions on a quantum system can affect another, spacelike separated, quantum state. Lately, quantum steering has been formulated also for timelike scenarios and for quantum channels. We approach all the three scenarios as one using tools from Stinespring dilations of quantum channels. By applying our technique we link all three steering problems one-to-one with the incompatibility of quantum measurements, a result formerly known only for spatial steering. We exploit this connection by showing how measurement uncertainty relations can be used as tight steering inequalities for all three scenarios. Moreover, we show that certain notions of temporal and spatial steering are fully equivalent and prove a hierarchy between temporal steering and macrorealistic hidden variable models. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevA.97.032301 SN - 2469-9926 SN - 2469-9934 VL - 97 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sposini, Vittoria A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Seno, Flavio T1 - Universal spectral features of different classes of random-diffusivity processes JF - New Journal of Physics N2 - Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations. KW - diffusion KW - power spectrum KW - random diffusivity KW - single trajectories Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab9200 SN - 1367-2630 VL - 22 IS - 6 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - JOUR A1 - Ritschel, Stefan A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Universality of delay-time averages for financial time series BT - analytical results, computer simulations, and analysis of historical stock-market prices JF - Journal of physics. Complexity N2 - We analyze historical data of stock-market prices for multiple financial indices using the concept of delay-time averaging for the financial time series (FTS). The region of validity of our recent theoretical predictions [Cherstvy A G et al 2017 New J. Phys. 19 063045] for the standard and delayed time-averaged mean-squared 'displacements' (TAMSDs) of the historical FTS is extended to all lag times. As the first novel element, we perform extensive computer simulations of the stochastic differential equation describing geometric Brownian motion (GBM) which demonstrate a quantitative agreement with the analytical long-term price-evolution predictions in terms of the delayed TAMSD (for all stock-market indices in crisis-free times). Secondly, we present a robust procedure of determination of the model parameters of GBM via fitting the features of the price-evolution dynamics in the FTS for stocks and cryptocurrencies. The employed concept of single-trajectory-based time averaging can serve as a predictive tool (proxy) for a mathematically based assessment and rationalization of probabilistic trends in the evolution of stock-market prices. KW - econophysics KW - geometric Brownian motion KW - time-series analysis Y1 - 2021 U6 - https://doi.org/10.1088/2632-072X/ac2220 SN - 2632-072X VL - 2 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Zu, Fengshuo A1 - Wolff, Christian Michael A1 - Ralaiarisoa, Maryline A1 - Amsalem, Patrick A1 - Neher, Dieter A1 - Koch, Norbert T1 - Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies JF - ACS applied materials & interfaces N2 - The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study. With ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe, we evidence that even minute UV photon fluxes (500 times lower than that used in typical UPS experiments) are sufficient to induce SPV and shift the perovskite Φ and VBM by several 100 meV compared to dark. By combining UV and visible light, we establish flat band conditions (i.e., compensate the surface-state-induced surface band bending) at the surface of four important perovskites, and find that all are p-type in the bulk, despite a pronounced n-type surface character in the dark. The present findings highlight that SPV effects must be considered in all surface studies to fully understand perovskites’ photophysical properties. KW - lead halide perovskite films KW - ultraviolet photoelectron spectroscopy KW - Kelvin probe KW - surface band bending KW - surface photovoltage KW - surface states Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b05293 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 24 SP - 21578 EP - 21583 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Avgar, Tal A1 - Beta, Carsten A1 - Nagel, Oliver A1 - Sabri, Adal A1 - Sarfati, Raphael A1 - Schwartz, Daniel K. A1 - Weiß, Matthias A1 - Krapf, Diego A1 - Nathan, Ran A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Unravelling the origins of anomalous diffusion BT - from molecules to migrating storks JF - Physical review research / American Physical Society N2 - Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.033055 SN - 2643-1564 VL - 4 IS - 3 PB - American Physical Society CY - College Park, MD ER - TY - JOUR A1 - Kurths, Jürgen A1 - Agarwal, Ankit A1 - Shukla, Roopam A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Caesar, Levke A1 - Krishnan, Raghavan A1 - Merz, Bruno T1 - Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach JF - Nonlinear processes in geophysics N2 - A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting. Y1 - 2019 U6 - https://doi.org/10.5194/npg-26-251-2019 SN - 1023-5809 SN - 1607-7946 VL - 26 IS - 3 SP - 251 EP - 266 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Diez, Isabel A1 - Tauer, Klaus A1 - Schulz, Burkhard T1 - Unusual polymer dispersions-polypyrrole suspensions made of rings, frames, and platelets JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - Experimental results show that the polymerization of pyrrole in the presence of beta-naphthalenesulfonic acid and different fluorosurfactants like perfluorooctanesulfonic acid, perfluorooctyldiethanolamide, and ammonium perfluorooctanoate leads to polypyrrole with special morphologies, such as rings or disks and rectangular frames or plates. The formation of these unusually shaped particles of polymer dispersions is explained by the chemical and colloidal peculiarities of the oxidative pyrrole polymerization with ammonium peroxodisulfate in aqueous medium. KW - polypyrrole KW - chemical oxidative polymerization KW - particle morphology Y1 - 2006 U6 - https://doi.org/10.1007/s00396-006-1521-8 SN - 0303-402X VL - 284 SP - 1431 EP - 1442 PB - Springer CY - New York ER - TY - JOUR A1 - Abdalla, Hassan E. A1 - Aharonian, Felix A. A1 - Benkhali, F. Ait A1 - Anguener, E. O. A1 - Arakawa, M. A1 - Arcaro, C. A1 - Armand, C. A1 - Ashkar, H. A1 - Backes, M. A1 - Martins, V. Barbosa A1 - Barnard, M. A1 - Becherini, Y. A1 - Berge, D. A1 - Bernloehr, K. A1 - Blackwell, R. A1 - Boettcher, M. A1 - Boisson, C. A1 - Bolmont, J. A1 - Bonnefoy, S. A1 - Bregeon, J. A1 - Breuhaus, M. A1 - Brun, F. A1 - Brun, P. A1 - Bryan, M. A1 - Buechele, M. A1 - Bulik, T. A1 - Bylund, T. A1 - Capasso, M. A1 - Caroff, S. A1 - Carosi, A. A1 - Casanova, Sabrina A1 - Cerruti, M. A1 - Chakraborty, N. A1 - Chand, T. A1 - Chandra, S. A1 - Chaves, R. C. G. A1 - Chen, A. A1 - Colafrancesco, S. A1 - Curylo, M. A1 - Davids, I. D. A1 - Deil, C. A1 - Devin, J. A1 - de Wilt, P. A1 - Dirson, L. A1 - Djannati-Atai, A. A1 - Dmytriiev, A. A1 - Donath, A. A1 - Doroshenko, V A1 - Dyks, J. A1 - Egberts, Kathrin A1 - Emery, G. A1 - Ernenwein, J-p A1 - Eschbach, S. A1 - Feijen, K. A1 - Fegan, S. A1 - Fiasson, A. A1 - Fontaine, G. A1 - Funk, S. A1 - Fuessling, M. A1 - Gabici, S. A1 - Gallant, Y. A. A1 - Gate, F. A1 - Giavitto, G. A1 - Glawion, D. A1 - Glicenstein, J. F. A1 - Gottschall, D. A1 - Grondin, M-H A1 - Hahn, J. A1 - Haupt, M. A1 - Heinzelmann, G. A1 - Henri, G. A1 - Hermann, G. A1 - Hinton, James Anthony A1 - Hofmann, W. A1 - Hoischen, Clemens A1 - Holch, Tim Lukas A1 - Holler, M. A1 - Horns, D. A1 - Huber, D. A1 - Iwasaki, H. A1 - Jamrozy, M. A1 - Jankowsky, D. A1 - Jankowsky, F. A1 - Jung-Richardt, I A1 - Kastendieck, M. A. A1 - Katarzynski, K. A1 - Katsuragawa, M. A1 - Katz, U. A1 - Khangulyan, D. A1 - Khelifi, B. A1 - King, J. A1 - Klepser, S. A1 - Kluzniak, W. A1 - Komin, Nu A1 - Kosack, K. A1 - Kostunin, D. A1 - Kraus, M. A1 - Lamanna, G. A1 - Lau, J. A1 - Lemiere, A. A1 - Lemoine-Goumard, M. A1 - Lenain, J-P A1 - Leser, Eva A1 - Levy, C. A1 - Lohse, T. A1 - Lopez-Coto, R. A1 - Lypova, I A1 - Mackey, J. A1 - Majumdar, J. A1 - Malyshev, D. A1 - Marandon, V A1 - Marcowith, Alexandre A1 - Mares, A. A1 - Mariaud, C. A1 - Marti-Devesa, G. A1 - Marx, R. A1 - Maurin, G. A1 - Meintjes, P. J. A1 - Mitchell, A. M. W. A1 - Moderski, R. A1 - Mohamed, M. A1 - Mohrmann, L. A1 - Muller, J. A1 - Moore, C. A1 - Moulin, Emmanuel A1 - Murach, T. A1 - Nakashima, S. A1 - de Naurois, M. A1 - Ndiyavala, H. A1 - Niederwanger, F. A1 - Niemiec, J. A1 - Oakes, L. A1 - Odaka, H. A1 - Ohm, S. A1 - Wilhelmi, E. de Ona A1 - Ostrowski, M. A1 - Oya, I A1 - Panter, M. A1 - Parsons, R. D. A1 - Perennes, C. A1 - Petrucci, P-O A1 - Peyaud, B. A1 - Piel, Q. A1 - Pita, S. A1 - Poireau, V A1 - Noel, A. Priyana A1 - Prokhorov, D. A. A1 - Prokoph, H. A1 - Puehlhofer, G. A1 - Punch, M. A1 - Quirrenbach, A. A1 - Raab, S. A1 - Rauth, R. A1 - Reimer, A. A1 - Reimer, O. A1 - Remy, Q. A1 - Renaud, M. A1 - Rieger, F. A1 - Rinchiuso, L. A1 - Romoli, C. A1 - Rowell, G. A1 - Rudak, B. A1 - Ruiz-Velasco, E. A1 - Sahakian, V A1 - Saito, S. A1 - Sanchez, David M. A1 - Santangelo, Andrea A1 - Sasaki, M. A1 - Schlickeiser, R. A1 - Schussler, F. A1 - Schulz, A. A1 - Schutte, H. A1 - Schwanke, U. A1 - Schwemmer, S. A1 - Seglar-Arroyo, M. A1 - Senniappan, M. A1 - Seyffert, A. S. A1 - Shafi, N. A1 - Shiningayamwe, K. A1 - Simoni, R. A1 - Sinha, A. A1 - Sol, H. A1 - Specovius, A. A1 - Spir-Jacob, M. A1 - Stawarz, L. A1 - Steenkamp, R. A1 - Stegmann, Christian A1 - Steppa, Constantin Beverly A1 - Takahashi, T. A1 - Tavernier, T. A1 - Taylor, A. M. A1 - Terrier, R. A1 - Tiziani, D. A1 - Tluczykont, M. A1 - Trichard, C. A1 - Tsirou, M. A1 - Tsuji, N. A1 - Tuffs, R. A1 - Uchiyama, Y. A1 - van der Walt, D. J. A1 - van Eldik, C. A1 - van Rensburg, C. A1 - van Soelen, B. A1 - Vasileiadis, G. A1 - Veh, J. A1 - Venter, C. A1 - Vincent, P. A1 - Vink, J. A1 - Voisin, F. A1 - Voelk, H. J. A1 - Vuillaume, T. A1 - Wadiasingh, Z. A1 - Wagner, S. J. A1 - White, R. A1 - Wierzcholska, A. A1 - Yang, R. A1 - Yoneda, H. A1 - Zacharias, M. A1 - Zanin, R. A1 - Zdziarski, A. A. A1 - Zech, Alraune A1 - Ziegler, A. A1 - Zorn, J. A1 - Zywucka, N. A1 - Maxted, N. T1 - Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with H.E.S.S. JF - Astronomy and astrophysics : an international weekly journal N2 - Young core-collapse supernovae with dense-wind progenitors may be able to accelerate cosmic-ray hadrons beyond the knee of the cosmic-ray spectrum, and this may result in measurable gamma-ray emission. We searched for gamma-ray emission from ten super- novae observed with the High Energy Stereoscopic System (H.E.S.S.) within a year of the supernova event. Nine supernovae were observed serendipitously in the H.E.S.S. data collected between December 2003 and December 2014, with exposure times ranging from 1.4 to 53 h. In addition we observed SN 2016adj as a target of opportunity in February 2016 for 13 h. No significant gamma-ray emission has been detected for any of the objects, and upper limits on the >1 TeV gamma-ray flux of the order of similar to 10(-13) cm(-)(2)s(-1) are established, corresponding to upper limits on the luminosities in the range similar to 2 x 10(39) to similar to 1 x 10(42) erg s(-1). These values are used to place model-dependent constraints on the mass-loss rates of the progenitor stars, implying upper limits between similar to 2 x 10(-5) and similar to 2 x 10(-3) M-circle dot yr(-1) under reasonable assumptions on the particle acceleration parameters. KW - gamma rays: general KW - supernovae: general KW - cosmic rays Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935242 SN - 1432-0746 VL - 626 PB - EDP Sciences CY - Les Ulis ER -