TY - JOUR A1 - Kunert, Nina A1 - Pang, Peter T. H. A1 - Tews, Ingo A1 - Coughlin, Michael W. A1 - Dietrich, Tim T1 - Quantifying modeling uncertainties when combining multiple gravitational-wave detections from binary neutron star sources JF - Physical review D N2 - With the increasing sensitivity of gravitational-wave detectors, we expect to observe multiple binary neutron-star systems through gravitational waves in the near future. The combined analysis of these gravitational-wave signals offers the possibility to constrain the neutron-star radius and the equation of state of dense nuclear matter with unprecedented accuracy. However, it is crucial to ensure that uncertainties inherent in the gravitational-wave models will not lead to systematic biases when information from multiple detections is combined. To quantify waveform systematics, we perform an extensive simulation campaign of binary neutron-star sources and analyze them with a set of four different waveform models. For our analysis with 38 simulations, we find that statistical uncertainties in the neutron-star radius decrease to 1250 m (2% at 90% credible interval) but that systematic differences between currently employed waveform models can be twice as large. Hence, it will be essential to ensure that systematic biases will not become dominant in inferences of the neutron-star equation of state when capitalizing on future developments. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.105.L061301 SN - 2470-0010 SN - 2470-0029 VL - 105 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Ni, Binbin A1 - Cao, Xing A1 - Shprits, Yuri A1 - Summers, Danny A1 - Gu, Xudong A1 - Fu, Song A1 - Lou, Yuequn T1 - Hot Plasma Effects on the Cyclotron-Resonant Pitch-Angle Scattering Rates of Radiation Belt Electrons Due to EMIC Waves JF - Geophysical research letters N2 - To investigate the hot plasma effects on the cyclotron-resonant interactions between electromagnetic ion cyclotron (EMIC) waves and radiation belt electrons in a realistic magnetospheric environment, calculations of the wave-induced bounce-averaged pitch angle diffusion coefficients are performed using both the cold and hot plasma dispersion relations. The results demonstrate that the hot plasma effects have a pronounced influence on the electron pitch angle scattering rates due to all three EMIC emission bands (H+, He+, and O+) when the hot plasma dispersion relation deviates significantly from the cold plasma approximation. For a given wave spectrum, the modification of the dispersion relation by hot anisotropic protons can strongly increase the minimum resonant energy for electrons interacting with O+ band EMIC waves, while the minimum resonant energies for H+ and He+ bands are not greatly affected. For H+ band EMIC waves, inclusion of hot protons tends to weaken the pitch angle scattering efficiency of >5MeV electrons. The most crucial differences introduced by the hot plasma effects occur for >3MeV electron scattering rates by He+ band EMIC waves. Mainly due to the changes of resonant frequency and wave group velocity when the hot protons are included, the difference in scattering rates can be up to an order of magnitude, showing a strong dependence on both electron energy and equatorial pitch angle. Our study confirms the importance of including hot plasma effects in modeling the scattering of ultra-relativistic radiation belt electrons by EMIC waves. Y1 - 2018 U6 - https://doi.org/10.1002/2017GL076028 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 1 SP - 21 EP - 30 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Bernardi, Rafael L. A1 - Berdja, Amokrane A1 - Dani Guzman, Christian A1 - Torres-Torriti, Miguel A1 - Roth, Martin M. T1 - Restoration of images with a spatially varying PSF of the T80-S telescope optical model using neural networks JF - Monthly notices of the Royal Astronomical Society N2 - Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariant in the image plane. However, this condition is not always satisfied in real optical systems. We propose a new method for the restoration of images affected by static and anisotropic aberrations using Deep Neural Networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T80-S Telescope optical model, a 80-cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image that has a constant and known PSF across its field of view. The method is to be tested on the T80-S Telescope. We present the method and results on synthetic data. KW - methods: statistical KW - techniques: image processing Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab3400 SN - 0035-8711 SN - 1365-2966 VL - 510 IS - 3 SP - 4284 EP - 4294 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Guo, Yingjie A1 - Ni, Binbin A1 - Fu, Song A1 - Wang, Dedong A1 - Shprits, Yuri A1 - Zhelavskaya, Irina A1 - Feng, Minghang A1 - Guo, Deyu T1 - Identification of controlling geomagnetic and solar wind factors for magnetospheric chorus intensity using feature selection techniques JF - Journal of geophysical research : A, Space physics N2 - Using over-5-year EMFISIS wave measurements from Van Allen Probes, we present a detailed survey to identify the controlling factors among the geomagnetic indices and solar wind parameters for the 1-min root mean square amplitudes of lower band chorus (LBC) and upper band chorus (UBC). A set of important features are automatically determined by feature selection techniques, namely, Random Forest and Maximum Relevancy Minimum Redundancy. Our analysis results indicate the AE index with zero-time-delay dominates the intensity evolution of LBC and UBC, consistent with the evidence that chorus waves prefer to occur and amplify during enhanced substorm periods. Regarding solar wind parameters, solar wind speed and IMF B-z are identified as the controlling factors for chorus wave intensity. Using the combination of all these important features, a predictive neural network model of chorus wave intensity is established to reconstruct the temporal variations of chorus wave intensity, for which application of Random Forest produces the overall best performance. Plain Language Summary Whistler mode chorus waves are electromagnetic waves observed in the low-density region near the geomagnetic equator outside the plasmapause. The dynamics of Earth's radiation belts are largely influenced by chorus waves owing to their dual contributions to both radiation belt electron acceleration and loss. In this study, we use feature selection techniques to identify the controlling geomagnetic and solar wind factors for magnetospheric chorus waves. Feature selection techniques implement the processes which can select the features most influential to the output. In this study, the inputs are geomagnetic indices and solar wind parameters and the output is the chorus wave intensity. The results indicate that AE index with zerotime delay dominates the chorus wave intensity. Furthermore, solar wind speed and IMF B-z are identified as the most important solar wind drivers for chorus wave intensity. On basis of the combination of all these important geomagnetic and solar wind controlling factors, we develop a neural network model of chorus wave intensity, and find that the model with the inputs identified using the Random Forest method produces the overall best performance. Y1 - 2021 U6 - https://doi.org/10.1029/2021JA029926 SN - 2169-9380 SN - 2169-9402 VL - 127 IS - 1 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Wang, Dedong A1 - Shprits, Yuri A1 - Zhelayskaya, Irina S. A1 - Agapitov, Oleksiy A1 - Drozdov, Alexander A1 - Aseev, Nikita T1 - Analytical chorus wave model derived from van Allen Probe Observations JF - Journal of geophysical research : Space physics N2 - Chorus waves play an important role in the dynamic evolution of energetic electrons in the Earth's radiation belts and ring current. Using more than 5 years of Van Allen Probe data, we developed a new analytical model for upper‐band chorus (UBC; 0.5fce < f < fce) and lower‐band chorus (LBC; 0.05fce < f < 0.5fce) waves, where fce is the equatorial electron gyrofrequency. By applying polynomial fits to chorus wave root mean square amplitudes, we developed regression models for LBC and UBC as a function of geomagnetic activity (Kp), L, magnetic latitude (λ), and magnetic local time (MLT). Dependence on Kp is separated from the dependence on λ, L, and MLT as Kp‐scaling law to simplify the calculation of diffusion coefficients and inclusion into particle tracing codes. Frequency models for UBC and LBC are also developed, which depends on MLT and magnetic latitude. This empirical model is valid in all MLTs, magnetic latitude up to 20°, Kp ≤ 6, L‐shell range from 3.5 to 6 for LBC and from 4 to 6 for UBC. The dependence of root mean square amplitudes on L are different for different bands, which implies different energy sources for different wave bands. This analytical chorus wave model is convenient for inclusion in quasi‐linear diffusion calculations of electron scattering rates and particle simulations in the inner magnetosphere, especially for the newly developed four‐dimensional codes, which require significantly improved wave parameterizations. KW - chorus waves KW - radiation belt electrons KW - ring current electrons KW - analytical model KW - wave-particle interactions KW - diffusion coefficients Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026183 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 2 SP - 1063 EP - 1084 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Smirnov, Artem G. A1 - Kronberg, Elena A. A1 - Latallerie, F. A1 - Daly, Patrick W. A1 - Aseev, Nikita A1 - Shprits, Yuri A1 - Kellerman, Adam C. A1 - Kasahara, Satoshi A1 - Turner, Drew L. A1 - Taylor, M. G. G. T. T1 - Electron Intensity Measurements by the Cluster/RAPID/IES Instrument in Earth's Radiation Belts and Ring Current JF - Space Weather: The International Journal of Research and Applications N2 - Plain Language Summary Radiation belts of the Earth, which are the zones of charged energetic particles trapped by the geomagnetic field, comprise enormous and dynamic systems. While the inner radiation belt, composed mainly of high-energy protons, is relatively stable, the outer belt, filled with energetic electrons, is highly variable and depends substantially on solar activity. Hence, extended reliable observations and the improved models of the electron intensities in the outer belt depending on solar wind parameters are necessary for prediction of their dynamics. The Cluster mission has been measuring electron flux intensities in the radiation belts since its launch in 2000, thus providing a huge dataset that can be used for radiation belts analysis. Using 16 years of electron measurements by the Cluster mission corrected for background contamination, we derived a uniform linear-logarithmic dependence of electron fluxes in the outer belt on the solar wind dynamic pressure. Y1 - 2019 U6 - https://doi.org/10.1029/2018SW001989 SN - 1542-7390 VL - 17 IS - 4 SP - 553 EP - 566 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dobynde, M. I. A1 - Effenberger, Frederic A1 - Kartashov, D. A. A1 - Shprits, Yuri A1 - Shurshakov, V. A. T1 - Ray-tracing simulation of the radiation dose distribution on the surface of the spherical phantom of the MATROSHKA-R experiment onboard the ISS JF - Life sciences in space research N2 - Space radiation is one of the main concerns for human space flights. The prediction of the radiation dose for the actual spacecraft geometry is very important for the planning of long-duration missions. We present a numerical method for the fast calculation of the radiation dose rate during a space flight. We demonstrate its application for dose calculations during the first and the second sessions of the MATROSHKA-R space experiment with a spherical tissue-equivalent phantom. The main advantage of the method is the short simulation time, so it can be applied for urgent radiation dose calculations for low-Earth orbit space missions. The method uses depth-dose curve and shield-and-composition distribution functions to calculate a radiation dose at the point of interest. The spacecraft geometry is processed into a shield-and-composition distribution function using a ray-tracing method. Depth-dose curves are calculated using the GEANT4 Monte-Carlo code (version 10.00.P02) for a double-layer aluminum-water shielding. Aluminum-water shielding is a good approximation of the real geometry, as water is a good equivalent for biological tissues, and aluminum is the major material of spacecraft bodies. KW - Space radiation KW - Radiation protection KW - Radiation dose calculation KW - GEANT4 modeling KW - Radiation on the ISS KW - MATROSHKA-R Y1 - 2019 U6 - https://doi.org/10.1016/j.lssr.2019.04.001 SN - 2214-5524 SN - 2214-5532 VL - 21 SP - 65 EP - 72 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhu, Hui A1 - Chen, Lunjin A1 - Liu, Xu A1 - Shprits, Yuri T1 - Modulation of locally generated equatorial noise by ULF wave JF - Journal of geophysical research : Space physics N2 - In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon. Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026199 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 4 SP - 2779 EP - 2787 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Shprits, Yuri A1 - Menietti, J. D. A1 - Drozdov, Alexander A1 - Horne, Richard B. A1 - Woodfield, Emma E. A1 - Groene, J. B. A1 - de Soria-Santacruz, M. A1 - Averkamp, T. F. A1 - Garrett, H. A1 - Paranicas, C. A1 - Gurnett, Don A. T1 - Strong whistler mode waves observed in the vicinity of Jupiter’s moons JF - Nature Communications N2 - Understanding of wave environments is critical for the understanding of how particles are accelerated and lost in space. This study shows that in the vicinity of Europa and Ganymede, that respectively have induced and internal magnetic fields, chorus wave power is significantly increased. The observed enhancements are persistent and exceed median values of wave activity by up to 6 orders of magnitude for Ganymede. Produced waves may have a pronounced effect on the acceleration and loss of particles in the Jovian magnetosphere and other astrophysical objects. The generated waves are capable of significantly modifying the energetic particle environment, accelerating particles to very high energies, or producing depletions in phase space density. Observations of Jupiter’s magnetosphere provide a unique opportunity to observe how objects with an internal magnetic field can interact with particles trapped in magnetic fields of larger scale objects. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05431-x SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Cervantes Villa, Juan Sebastian A1 - Shprits, Yuri A1 - Aseev, Nikita A1 - Allison, Hayley J. T1 - Quantifying the effects of EMIC wave scattering and magnetopause shadowing in the outer electron radiation belt by means of data assimilation JF - Journal of geophysical research : Space physics N2 - In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant mu ranging from 300 to 3,000 MeV G(-1). We inspect the innovation vector and perform a statistical analysis to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. Our results are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. We show that EMIC wave scattering tends to dominate loss at lower L shells, and it may amount to between 10%/hr and 30%/hr of the maximum value of phase space density (PSD) over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50%/hr to 70%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt. Y1 - 2020 U6 - https://doi.org/10.1029/2020JA028208 SN - 2169-9380 SN - 2169-9402 VL - 125 IS - 8 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kim, Kyung-Chan A1 - Shprits, Yuri T1 - Survey of the Favorable Conditions for Magnetosonic Wave Excitation JF - Journal of geophysical research : Space physics N2 - The ratio of the proton ring velocity (VR) to the local Alfven speed (VA), in addition to proton ring distributions, plays a key factor in the excitation of magnetosonic waves at frequencies between the proton cyclotron frequency fcp and the lower hybrid resonance frequency fLHR in the Earth's magnetosphere. Here we investigate whether there is a statistically significant relationship between occurrences of proton rings and magnetosonic waves both outside and inside the plasmapause using particle and wave data from Van Allen Probe-A during the time period of October 2012 to December 2015. We also perform a statistical survey of the ratio of the ring energy (ER, corresponding to VR) to the Alfven energy (EA, corresponding to VA) to determine the favorable conditions under which magnetosonic waves in each of two frequency bands (fcp < f ≤ 0.5 fLHR and 0.5 fLHR < f < fLHR) can be excited. The results show that the magnetosonic waves in both frequency bands occur around the postnoon (12–18 magnetic local time, MLT) sector outside the plasmapause when ER is comparable to or lower than EA, and those in lower-frequency bands (fcp < f ≤ 0.5 fLHR) occur around the postnoon sector inside the plasmapause when ER/EA > ~9. However, there is one discrepancy between occurrences of proton rings and magnetosonic waves in low-frequency bands around the prenoon sector (6–12 MLT) outside the plasmapause, which suggests either that the waves may have propagated during active time from the postnoon sector after being excited during quiet time, or they may have locally excited in the prenoon sector during active time. Y1 - 2018 U6 - https://doi.org/10.1002/2017JA024865 SN - 2169-9380 SN - 2169-9402 VL - 123 IS - 1 SP - 400 EP - 413 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Shprits, Yuri A1 - Kellerman, Adam C . A1 - Aseev, Nikita A1 - Drozdov, Alexander A1 - Michaelis, Ingo T1 - Multi-MeV electron loss in the heart of the radiation belts JF - Geophysical research letters N2 - Significant progress has been made in recent years in understanding acceleration mechanisms in the Earth's radiation belts. In particular, a number of studies demonstrated the importance of the local acceleration by analyzing the radial profiles of phase space density (PSD) and observing building up peaks in PSD. In this study, we focus on understanding of the local loss using very similar tools. The profiles of PSD for various values of the first adiabatic invariants during the previously studied 17 January 2013 storm are presented and discussed. The profiles of PSD show clear deepening minimums consistent with the scattering by electromagnetic ion cyclotron waves. Long-term evolution shows that local minimums in PSD can persist for relatively long times. During considered interval of time the deepening minimums were observed around L* = 4 during 17 January 2013 storm and around L* = 3.5 during 1 March 2013 storm. This study shows a new method that can help identify the location, magnitude, and time of the local loss and will help quantify local loss in the future. This study also provides additional clear and definitive evidence that local loss plays a major role for the dynamics of the multi-MeV electrons. Y1 - 2017 U6 - https://doi.org/10.1002/2016GL072258 SN - 0094-8276 SN - 1944-8007 VL - 44 IS - 3 SP - 1204 EP - 1209 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Adolfs, Marjolijn A1 - Hoque, Mohammed Mainul A1 - Shprits, Yuri T1 - Storm-time relative total electron content modelling using machine learning techniques JF - Remote sensing N2 - Accurately predicting total electron content (TEC) during geomagnetic storms is still a challenging task for ionospheric models. In this work, a neural-network (NN)-based model is proposed which predicts relative TEC with respect to the preceding 27-day median TEC, during storm time for the European region (with longitudes 30 degrees W-50 degrees E and latitudes 32.5 degrees N-70 degrees N). The 27-day median TEC (referred to as median TEC), latitude, longitude, universal time, storm time, solar radio flux index F10.7, global storm index SYM-H and geomagnetic activity index Hp30 are used as inputs and the output of the network is the relative TEC. The relative TEC can be converted to the actual TEC knowing the median TEC. The median TEC is calculated at each grid point over the European region considering data from the last 27 days before the storm using global ionosphere maps (GIMs) from international GNSS service (IGS) sources. A storm event is defined when the storm time disturbance index Dst drops below 50 nanotesla. The model was trained with storm-time relative TEC data from the time period of 1998 until 2019 (2015 is excluded) and contains 365 storms. Unseen storm data from 33 storm events during 2015 and 2020 were used to test the model. The UQRG GIMs were used because of their high temporal resolution (15 min) compared to other products from different analysis centers. The NN-based model predictions show the seasonal behavior of the storms including positive and negative storm phases during winter and summer, respectively, and show a mixture of both phases during equinoxes. The model's performance was also compared with the Neustrelitz TEC model (NTCM) and the NN-based quiet-time TEC model, both developed at the German Aerospace Agency (DLR). The storm model has a root mean squared error (RMSE) of 3.38 TEC units (TECU), which is an improvement by 1.87 TECU compared to the NTCM, where an RMSE of 5.25 TECU was found. This improvement corresponds to a performance increase by 35.6%. The storm-time model outperforms the quiet-time model by 1.34 TECU, which corresponds to a performance increase by 28.4% from 4.72 to 3.38 TECU. The quiet-time model was trained with Carrington averaged TEC and, therefore, is ideal to be used as an input instead of the GIM derived 27-day median. We found an improvement by 0.8 TECU which corresponds to a performance increase by 17% from 4.72 to 3.92 TECU for the storm-time model using the quiet-time-model predicted TEC as an input compared to solely using the quiet-time model. KW - ionosphere KW - relative total electron content KW - geomagnetic storms KW - neural KW - networks KW - NTCM KW - European storm-time model Y1 - 2022 U6 - https://doi.org/10.3390/rs14236155 SN - 2072-4292 VL - 14 IS - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Smirnov, Artem A1 - Berrendorf, Max A1 - Shprits, Yuri A1 - Kronberg, Elena A. A1 - Allison, Hayley J. A1 - Aseev, Nikita A1 - Zhelavskaya, Irina A1 - Morley, Steven K. A1 - Reeves, Geoffrey D. A1 - Carver, Matthew R. A1 - Effenberger, Frederic T1 - Medium energy electron flux in earth's outer radiation belt (MERLIN) BT - a Machine learning model JF - Space weather : the international journal of research and applications N2 - The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120-600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on >15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis. KW - machine learning KW - radiation belts KW - electron flux KW - empirical modeling KW - magnetosphere KW - electrons Y1 - 2020 U6 - https://doi.org/10.1029/2020SW002532 SN - 1542-7390 VL - 18 IS - 11 PB - American geophysical union, AGU CY - Washington ER - TY - JOUR A1 - Cervantes Villa, Juan Sebastian A1 - Shprits, Yuri A1 - Aseev, Nikita A1 - Drozdov, Alexander A1 - Castillo Tibocha, Angelica Maria A1 - Stolle, Claudia T1 - Identifying radiation belt electron source and loss processes by assimilating spacecraft data in a three-dimensional diffusion model JF - Journal of geophysical research : Space physics N2 - Data assimilation aims to blend incomplete and inaccurate data with physics-based dynamical models. In the Earth's radiation belts, it is used to reconstruct electron phase space density, and it has become an increasingly important tool in validating our current understanding of radiation belt dynamics, identifying new physical processes, and predicting the near-Earth hazardous radiation environment. In this study, we perform reanalysis of the sparse measurements from four spacecraft using the three-dimensional Versatile Electron Radiation Belt diffusion model and a split-operator Kalman filter over a 6-month period from 1 October 2012 to 1 April 2013. In comparison to previous works, our 3-D model accounts for more physical processes, namely, mixed pitch angle-energy diffusion, scattering by Electromagnetic Ion Cyclotron waves, and magnetopause shadowing. We describe how data assimilation, by means of the innovation vector, can be used to account for missing physics in the model. We use this method to identify the radial distances from the Earth and the geomagnetic conditions where our model is inconsistent with the measured phase space density for different values of the invariants mu and K. As a result, the Kalman filter adjusts the predictions in order to match the observations, and we interpret this as evidence of where and when additional source or loss processes are active. The current work demonstrates that 3-D data assimilation provides a comprehensive picture of the radiation belt electrons and is a crucial step toward performing reanalysis using measurements from ongoing and future missions. KW - acceleration KW - code KW - density KW - emic waves KW - energetic particle KW - mechanisms KW - reanalysis KW - ultrarelativistic electrons KW - weather Y1 - 2019 U6 - https://doi.org/10.1029/2019JA027514 SN - 2169-9380 SN - 2169-9402 VL - 125 IS - 1 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Smirnov, Artem A1 - Shprits, Yuri A1 - Allison, Hayley A1 - Aseev, Nikita A1 - Drozdov, Alexander A1 - Kollmann, Peter A1 - Wang, Dedong A1 - Saikin, Anthony T1 - An empirical model of the equatorial electron pitch angle distributions in earth's outer radiation belt JF - Space Weather: the International Journal of Research and Applications N2 - In this study, we present an empirical model of the equatorial electron pitch angle distributions (PADs) in the outer radiation belt based on the full data set collected by the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes in 2012-2019. The PADs are fitted with a combination of the first, third and fifth sine harmonics. The resulting equation resolves all PAD types found in the outer radiation belt (pancake, flat-top, butterfly and cap PADs) and can be analytically integrated to derive omnidirectional flux. We introduce a two-step modeling procedure that for the first time ensures a continuous dependence on L, magnetic local time and activity, parametrized by the solar wind dynamic pressure. We propose two methods to reconstruct equatorial electron flux using the model. The first approach requires two uni-directional flux observations and is applicable to low-PA data. The second method can be used to reconstruct the full equatorial PADs from a single uni- or omnidirectional measurement at off-equatorial latitudes. The model can be used for converting the long-term data sets of electron fluxes to phase space density in terms of adiabatic invariants, for physics-based modeling in the form of boundary conditions, and for data assimilation purposes. KW - pitch angle KW - radiation belt KW - model KW - magnetosphere KW - van allen probes; KW - electrons Y1 - 2022 U6 - https://doi.org/10.1029/2022SW003053 SN - 1542-7390 VL - 20 IS - 9 PB - American Geophysical Union CY - Washington, DC ER - TY - JOUR A1 - Walker, Simon N. A1 - Boynton, Richard J. A1 - Shprits, Yuri A1 - Balikhin, Michael A. A1 - Drozdov, Alexander T1 - Forecast of the energetic electron environment of the radiation belts JF - Space Weather: The International Journal of Research and Applications N2 - Different modeling methodologies possess different strengths and weakness. For instance, data based models may provide superior accuracy but have a limited spatial coverage while physics based models may provide lower accuracy but provide greater spatial coverage. This study investigates the coupling of a data based model of the electron fluxes at geostationary orbit (GEO) with a numerical model of the radiation belt region to improve the resulting forecasts/pastcasts of electron fluxes over the whole radiation belt region. In particular, two coupling methods are investigated. The first assumes an average value for L* for GEO, namely LGEO* L-GEO* = 6.2. The second uses a value of L* that varies with geomagnetic activity, quantified using the Kp index. As the terrestrial magnetic field responds to variations in geomagnetic activity, the value of L* will vary for a specific location. In this coupling method, the value of L* is calculated using the Kp driven Tsyganenko 89c magnetic field model for field line tracing. It is shown that this addition can result in changes in the initialization of the parameters at the Versatile Electron Radiation Belt model outer boundary. Model outputs are compared to Van Allen Probes MagEIS measurements of the electron fluxes in the inner magnetosphere for the March 2015 geomagnetic storm. It is found that the fixed LGEO* L-GEO* coupling method produces a more realistic forecast. KW - radiation belt forecasts KW - data based NARMAX modeling KW - verb simulations; KW - geostationary orbit KW - electron flux forecasts Y1 - 2022 U6 - https://doi.org/10.1029/2022SW003124 SN - 1542-7390 VL - 20 IS - 12 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Prol, Fabricio S. A1 - Smirnov, Artem G. A1 - Hoque, M. Mainul A1 - Shprits, Yuri T1 - Combined model of topside ionosphere and plasmasphere derived from radio-occultation and Van Allen Probes data JF - Scientific reports N2 - In the last years, electron density profile functions characterized by a linear dependence on the scale height showed good results when approximating the topside ionosphere. The performance above 800 km, however, is not yet well investigated. This study investigates the capability of the semi-Epstein functions to represent electron density profiles from the peak height up to 20,000 km. Electron density observations recorded by the Van Allen Probes were used to resolve the scale height dependence in the plasmasphere. It was found that the linear dependence of the scale height in the topside ionosphere cannot be directly used to extrapolate profiles above 800 km. We find that the dependence of scale heights on altitude is quadratic in the plasmasphere. A statistical model of the scale heights is therefore proposed. After combining the topside ionosphere and plasmasphere by a unified model, we have obtained good estimations not only in the profile shapes, but also in the Total Electron Content magnitude and distributions when compared to actual measurements from 2013, 2014, 2016 and 2017. Our investigation shows that Van Allen Probes can be merged to radio-occultation data to properly represent the upper ionosphere and plasmasphere by means of a semi-Epstein function. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-13302-1 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Haas, Bernhard A1 - Shprits, Yuri A1 - Allison, Hayley A1 - Wutzig, Michael A1 - Wang, Dedong T1 - Which parameter controls ring current electron dynamics JF - Frontiers in astronomy and space sciences N2 - Predicting the electron population of Earth's ring current during geomagnetic storms still remains a challenging task. In this work, we investigate the sensitivity of 10 keV ring current electrons to different driving processes, parameterised by the Kp index, during several moderate and intense storms. Results are validated against measurements from the Van Allen Probes satellites. Perturbing the Kp index allows us to identify the most dominant processes for moderate and intense storms respectively. We find that during moderate storms (Kp < 6) the drift velocities mostly control the behaviour of low energy electrons, while loss from wave-particle interactions is the most critical parameter for quantifying the evolution of intense storms (Kp > 6). Perturbations of the Kp index used to drive the boundary conditions at GEO and set the plasmapause location only show a minimal effect on simulation results over a limited L range. It is further shown that the flux at L & SIM; 3 is more sensitive to changes in the Kp index compared to higher L shells, making it a good proxy for validating the source-loss balance of a ring current model. KW - ring current KW - magnetosphere KW - electron lifetimes KW - electrons KW - van allen probes (RBSP) KW - ring current model KW - verb Y1 - 2022 U6 - https://doi.org/10.3389/fspas.2022.911002 SN - 2296-987X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Kim, Kyung-Chan A1 - Shprits, Yuri T1 - Statistical Analysis of Hiss Waves in Plasmaspheric Plumes Using Van Allen Probe Observations JF - Journal of geophysical research : Space physics N2 - Plasmaspheric hiss waves commonly observed in high‐density regions in the Earth's magnetosphere are known to be one of the main contributors to the loss of radiation belt electrons. There has been a lot of effort to investigate the distributions of hiss waves in the plasmasphere, while relatively little attention has been given to those in the plasmaspheric plume. In this study, we present for the first time a statistical analysis of the occurrence and the spatial distribution of wave amplitudes and wave normal angles for hiss waves in plumes using Van Allen Probes observations during the period of October 2012 to December 2016. Statistical results show that a wide range of hiss wave amplitudes in plumes from a few picotesla to >100 pT is observed, but a modest (<20 pT) wave amplitude is more commonly observed regardless of geomagnetic activity in both the midnight‐to‐dawn and dusk sector. By contrast, stronger amplitude hiss occurs preferentially during geomagnetically active times in the dusk sector. The wave normal angles are distributed over a broad range from 0° to 90° with a bimodal distribution: a quasi‐field‐aligned population (<20°) with an occurrence rate of <60% and an oblique one (>50°) with a relative low occurrence rate of ≲20%. Therefore, from a statistical point of view, we confirm that the hiss intensity (a few tens of picotesla) and field‐aligned hiss wave adopted in previous simulation studies are a reasonable assumption but stress that the activity dependence of the wave amplitude should be considered. KW - plasmaspheric hiss KW - plasmaspheric plume KW - Van Allen Probes Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026458 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 3 SP - 1904 EP - 1915 PB - American Geophysical Union CY - Washington ER -