TY - JOUR A1 - Bolotov, Dmitry A1 - Bolotov, Maxim I. A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Twisted States in a System of Nonlinearly Coupled Phase Oscillators JF - Regular and chaotic dynamics : international scientific journal N2 - We study the dynamics of the ring of identical phase oscillators with nonlinear nonlocal coupling. Using the Ott - Antonsen approach, the problem is formulated as a system of partial derivative equations for the local complex order parameter. In this framework, we investigate the existence and stability of twisted states. Both fully coherent and partially coherent stable twisted states were found (the latter ones for the first time for identical oscillators). We show that twisted states can be stable starting from a certain critical value of the medium length, or on a length segment. The analytical results are confirmed with direct numerical simulations in finite ensembles. KW - twisted state KW - phase oscillators KW - nonlocal coupling KW - Ott - Antonsen reduction KW - stability analysis Y1 - 2019 U6 - https://doi.org/10.1134/S1560354719060091 SN - 1560-3547 SN - 1468-4845 VL - 24 IS - 6 SP - 717 EP - 724 PB - Pleiades publishing inc CY - Moscow ER - TY - JOUR A1 - Kumar, Mohit A1 - Rosenblum, Michael T1 - Two mechanisms of remote synchronization in a chain of Stuart-Landau oscillators JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Remote synchronization implies that oscillators interacting not directly but via an additional unit (hub) adjust their frequencies and exhibit frequency locking while the hub remains asynchronous. In this paper, we analyze the mechanisms of remote synchrony in a small network of three coupled Stuart-Landau oscillators using recent results on higher-order phase reduction. We analytically demonstrate the role of two factors promoting remote synchrony. These factors are the nonisochronicity of oscillators and the coupling terms appearing in the secondorder phase approximation. We show a good correspondence between our theory and numerical results for small and moderate coupling strengths. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.054202 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Tyulkina, Irina V. A1 - Goldobin, Denis S. A1 - Klimenko, Lyudmila S. A1 - Pikovskij, Arkadij T1 - Two-Bunch Solutions for the Dynamics of Ott–Antonsen Phase Ensembles JF - Radiophysics and Quantum Electronics N2 - We have developed a method for deriving systems of closed equations for the dynamics of order parameters in the ensembles of phase oscillators. The Ott-Antonsen equation for the complex order parameter is a particular case of such equations. The simplest nontrivial extension of the Ott-Antonsen equation corresponds to two-bunch states of the ensemble. Based on the equations obtained, we study the dynamics of multi-bunch chimera states in coupled Kuramoto-Sakaguchi ensembles. We show an increase in the dimensionality of the system dynamics for two-bunch chimeras in the case of identical phase elements and a transition to one-bunch "Abrams chimeras" for imperfect identity (in the latter case, the one-bunch chimeras become attractive). Y1 - 2019 U6 - https://doi.org/10.1007/s11141-019-09924-7 SN - 0033-8443 SN - 1573-9120 VL - 61 IS - 8-9 SP - 640 EP - 649 PB - Springer CY - New York ER - TY - JOUR A1 - Betke, Alexander A1 - Lokstein, Heiko T1 - Two-photon excitation spectroscopy of photosynthetic light-harvesting complexes and pigments JF - Faraday discussions N2 - In addition to (bacterio)chlorophylls, (B)Chls, light-harvesting complexes (LHCs) bind carotenoids, and/or their oxygen derivatives, xanthophylls. Xanthophylls/carotenoids have pivotal functions in LHCs: in stabilization of the structure, as accessory light-harvesting pigments and, probably most importantly, in photoprotection. Xanthophylls are assumed to be involved in the not yet fully understood mechanism of energy-dependent (qE) non-photochemical quenching of Chl fluorescence (NPQ) in higher plants and algae. The so called "xanthophyll cycle" appears to be crucial in this regard. The molecular mechanism(s) of xanthophyll involvement in qE/NPQ have not been established, yet. Moreover, excitation energy transfer (EET) processes involving carotenoids are also difficult to study, due to the fact that transitions between the ground state (S-0, 1(1)A(g)(-)) and the lowest excited singlet state (S-1, 2(1)A(g)(-)) of carotenoids are optically one-photon forbidden ("dark"). Two-photon excitation spectroscopic techniques have been used for more than two decades to study one-photon forbidden states of carotenoids. In the current study, two-photon excitation profiles of LHCII samples containing different xanthophyll complements were measured in the presumed 1(1)A(g)(-) -> 2(1)A(g)(-) (S-0 -> S-1) transition spectral region of the xanthophylls, as well as for isolated chlorophylls a and b in solution. The results indicate that direct two-photon excitation of Chls in this spectral region is dominant over that by xanthophylls. Implications of the results for proposed mechanism(s) of qE/NPQ will be discussed. Y1 - 2019 U6 - https://doi.org/10.1039/c8fd00198g SN - 1359-6640 SN - 1364-5498 VL - 216 SP - 494 EP - 506 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - von Reppert, Alexander A1 - Willig, Lisa A1 - Pudell, Jan-Etienne A1 - Roessle, M. A1 - Leitenberger, Wolfram A1 - Herzog, Marc A1 - Ganss, F. A1 - Hellwig, O. A1 - Bargheer, Matias T1 - Ultrafast laser generated strain in granular and continuous FePt thin films JF - Applied physics letters N2 - We employ ultrafast X-ray diffraction to compare the lattice dynamics of laser-excited continuous and granular FePt films on MgO (100) substrates. Contrary to recent results on free-standing granular films, we observe in both cases a pronounced and long-lasting out-of-plane expansion. We attribute this discrepancy to the in-plane expansion, which is suppressed by symmetry in continuous films. Granular films on substrates are less constrained and already show a reduced out-of-plane contraction. Via the Poisson effect, out-of-plane contractions drive in-plane expansion and vice versa. Consistently, the granular film exhibits a short-lived out-of-plane contraction driven by ultrafast demagnetization which is followed by a reduced and delayed expansion. From the acoustic reflections of the observed strain waves at the film-substrate interface, we extract a 13% reduction of the elastic constants in thin 10 nm FePt films compared to bulk-like samples. (C) 2018 Author(s). Y1 - 2018 U6 - https://doi.org/10.1063/1.5050234 SN - 0003-6951 SN - 1077-3118 VL - 113 IS - 12 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Pudell, Jan-Etienne A1 - von Reppert, Alexander A1 - Schick, D. A1 - Zamponi, F. A1 - Rössle, Matthias A1 - Herzog, Marc A1 - Zabel, Hartmut A1 - Bargheer, Matias T1 - Ultrafast negative thermal expansion driven by spin disorder JF - Physical review : B, Condensed matter and materials physics N2 - We measure the transient strain profile in a nanoscale multilayer system composed of yttrium, holmium, and niobium after laser excitation using ultrafast x-ray diffraction. The strain propagation through each layer is determined by transient changes in the material-specific Bragg angles. We experimentally derive the exponentially decreasing stress profile driving the strain wave and show that it closely matches the optical penetration depth. Below the Neel temperature of Ho, the optical excitation triggers negative thermal expansion, which is induced by a quasi-instantaneous contractive stress and a second contractive stress contribution increasing on a 12-ps timescale. These two timescales were recently measured for the spin disordering in Ho [Rettig et al., Phys. Rev. Lett. 116, 257202 (2016)]. As a consequence, we observe an unconventional bipolar strain pulse with an inverted sign traveling through the heterostructure. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.99.094304 SN - 2469-9950 SN - 2469-9969 VL - 99 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Clark, Oliver J. A1 - Wadgaonkar, Indrajit A1 - Freyse, Friedrich A1 - Springholz, Gunther A1 - Battiato, Marco A1 - Sanchez-Barriga, Jaime T1 - Ultrafast thermalization pathways of excited bulk and surface states in the ferroelectric rashba semiconductor GeTe JF - Advanced materials N2 - A large Rashba effect is essential for future applications in spintronics. Particularly attractive is understanding and controlling nonequilibrium properties of ferroelectric Rashba semiconductors. Here, time- and angle-resolved photoemission is utilized to access the ultrafast dynamics of bulk and surface transient Rashba states after femtosecond optical excitation of GeTe. A complex thermalization pathway is observed, wherein three different timescales can be clearly distinguished: intraband thermalization, interband equilibration, and electronic cooling. These dynamics exhibit an unconventional temperature dependence: while the cooling phase speeds up with increasing sample temperature, the opposite happens for interband thermalization. It is demonstrated how, due to the Rashba effect, an interdependence of these timescales on the relative strength of both electron-electron and electron-phonon interactions is responsible for the counterintuitive temperature dependence, with spin-selection constrained interband electron-electron scatterings found both to dominate dynamics away from the Fermi level, and to weaken with increasing temperature. These findings are supported by theoretical calculations within the Boltzmann approach explicitly showing the opposite behavior of all relevant electron-electron and electron-phonon scattering channels with temperature, thus confirming the microscopic mechanism of the experimental findings. The present results are important for future applications of ferroelectric Rashba semiconductors and their excitations in ultrafast spintronics. KW - ferroelectric semiconductors KW - Rashba effect KW - spin- and angle-resolved photoemission KW - spin-orbit coupling KW - time-resolved photoemission KW - ultrafast dynamics Y1 - 2022 U6 - https://doi.org/10.1002/adma.202200323 SN - 0935-9648 SN - 1521-4095 VL - 34 IS - 24 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Bodrova, Anna S. T1 - Ultraslow scaled Brownian motion JF - New journal of physics : the open-access journal for physics N2 - We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations. KW - anomalous diffusion KW - stochastic processes KW - ageing Y1 - 2015 U6 - https://doi.org/10.1088/1367-2630/17/6/063038 SN - 1367-2630 VL - 17 IS - 063038 PB - Dt. Physikalische Ges., IOP CY - Bad Honnef, London ER - TY - JOUR A1 - Cheng, Xin A1 - Kliem, Bernhard A1 - Ding, Mingde T1 - Unambiguous evidence of filament splitting-induced partial eruptions JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter. KW - Sun: magnetic fields KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aab08d SN - 0004-637X SN - 1538-4357 VL - 856 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - von Reppert, Alexander A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Zeuschner, Steffen Peer A1 - Dumesnil, Karine A1 - Bargheer, Matias T1 - Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer JF - Structural Dynamics N2 - Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses. KW - Strain measurement KW - Photoexcitations KW - Crystal lattices KW - Femtosecond lasers KW - Thermal effects KW - Heterostructures KW - Ultrafast X-rays KW - Phonons Y1 - 2020 U6 - https://doi.org/10.1063/1.5145315 SN - 2329-7778 VL - 7 IS - 024303 PB - AIP Publishing LLC CY - Melville, NY ER -