TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon J. A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni T1 - Can potential defects in LPBF be healed from the laser exposure of subsequent layers? BT - A quantitative study JF - Metals : open access journal N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 mu m) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - selective laser melting (SLM) KW - additive manufacturing (AM) KW - process KW - monitoring KW - infrared thermography KW - optical tomography KW - X-ray computed KW - tomography (XCT) KW - healing KW - in situ monitoring Y1 - 2021 U6 - https://doi.org/10.3390/met11071012 SN - 2075-4701 VL - 11 IS - 7 PB - MDPI CY - Basel ER - TY - THES A1 - Zheng, Chunming T1 - Bursting and synchronization in noisy oscillatory systems T1 - Bursting und Synchronisation in verrauschten, oszillierenden Systemen N2 - Noise is ubiquitous in nature and usually results in rich dynamics in stochastic systems such as oscillatory systems, which exist in such various fields as physics, biology and complex networks. The correlation and synchronization of two or many oscillators are widely studied topics in recent years. In this thesis, we mainly investigate two problems, i.e., the stochastic bursting phenomenon in noisy excitable systems and synchronization in a three-dimensional Kuramoto model with noise. Stochastic bursting here refers to a sequence of coherent spike train, where each spike has random number of followers due to the combined effects of both time delay and noise. Synchronization, as a universal phenomenon in nonlinear dynamical systems, is well illustrated in the Kuramoto model, a prominent model in the description of collective motion. In the first part of this thesis, an idealized point process, valid if the characteristic timescales in the problem are well separated, is used to describe statistical properties such as the power spectral density and the interspike interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate, and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary and a forced Fokker-Planck equation. We extend it to the delay-coupled case and derive analytically the statistics of the spikes in each neuron, the pairwise correlations between any two neurons, and the spectrum of the total output from the network. In the second part, we investigate the three-dimensional noisy Kuramoto model, which can be used to describe the synchronization in a swarming model with helical trajectory. In the case without natural frequency, the Kuramoto model can be connected with the Vicsek model, which is widely studied in collective motion and swarming of active matter. We analyze the linear stability of the incoherent state and derive the critical coupling strength above which the incoherent state loses stability. In the limit of no natural frequency, an exact self-consistent equation of the mean field is derived and extended straightforward to any high-dimensional case. N2 - Rauschen ist in der Natur allgegenwärtig und führt zu einer reichen Dynamik in stochastischen Systemen von gekoppelten Oszillatoren, die in so unterschiedlichen Bereichen wie Physik, Biologie und in komplexen Netzwerken existieren. Korrelation und Synchronisation von zwei oder vielen Oszillatoren ist in den letzten Jahren ein aktives Forschungsfeld. In dieser Arbeit untersuchen wir hauptsächlich zwei Probleme, d.h. das stochastische Burst-Phänomen in verrauschten anregbaren Systemen und die Synchronisation in einem dreidimensionalen Kuramoto-Modell mit Rauschen. Stochastisches Bursting bezieht sich hier auf eine Folge von kohärenten Spike-Zügen, bei denen jeder Spike aufgrund der kombinierten Effekte von Zeitverzögerung und Rauschen eine zufällige Anzahl von Folge Spikes aufweist. Die Synchronisation als universelles Phänomen in nichtlinearen dynamischen Systemen kann anhand des Kuramoto-Modells, einem grundlegenden Modell bei der gekoppelter Oszillatoren und kollektiver Bewegung, gut demonstriert und analysiert werden. Im ersten Teil dieser Arbeit wird ein idealisierter Punktprozess betrachtet, der gültig ist, wenn die charakteristischen Zeitskalen im Problem gut voneinander getrennt sind,um statistische Eigenschaften wie die spektrale Leistungsdichte und die Intervallverteilung zwischen Neuronen Impulsen zu beschreiben. Wir zeigen, wie die Hauptparameter des Punktprozesses, die spontane Anregungsrate und die Wahrscheinlichkeit, während der Verzögerungsaktion einen Impuls zu induzieren, aus den Lösungen einer stationären und einer getriebenen Fokker-Planck-Gleichung berechnet werden können. Wir erweitern dieses Ergebnis auf den verzögerungsgekoppelten Fall und leiten analytisch die Statistiken der Impulse in jedem Neuron, die paarweisen Korrelationen zwischen zwei beliebigen Neuronen und das Spektrum der Zeitreihe alle Impulse aus dem Netzwerk ab. Im zweiten Teil untersuchen wir das dreidimensionale verrauschte Kuramoto-Modell, mit dem die Synchronisation eines Schwarmmodells mit schraubenförmigen Flugbahnen beschrieben werden kann. Im Fall ohne Eigenfrequenz jedes Teilchensist das System äquivalent zum Vicsek Modell, welches in der Beschreibung der kollektiven Bewegung von Schwärmen und aktiver Materie eine breite Anwendung findet. Wir analysieren die lineare Stabilität des inkohärenten Zustands und leiten die kritische Kopplungsstärke ab, oberhalb derer der inkohärente Zustand an Stabilität verliert. Im Fall ohne Eigenfrequenz wird eine exakte selbstkonsistente Gleichung für das mittlere Feld abgeleitet und direkt für höherdimensionale Bewegungen verallgemeinert. KW - Synchronization KW - Kuramoto model KW - Oscillation KW - stochastic bursting KW - Synchronisation KW - Kuramoto-Modell KW - Oszillatoren KW - Stochastisches Bursting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-500199 ER - TY - JOUR A1 - Franović, Igor A1 - Omel'chenko, Oleh A1 - Wolfrum, Matthias T1 - Bumps, chimera states, and Turing patterns in systems of coupled active rotators JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Self-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of Kuramoto oscillators. For coupled excitable units, similar patterns where coherent units are at rest are called bump states. Here, we study bumps in an array of active rotators coupled by nonlocal attraction and global repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing patterns: a single incoherent unit appears in a homoclinic bifurcation, undergoing subsequent transitions to quasiperiodic and chaotic behavior, which eventually transforms into extensive chaos with many incoherent units. We present different types of transitions and explain the formation of coherence-incoherence patterns according to the classical paradigm of short-range activation and long-range inhibition. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.L052201 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Eckert, Sebastian A1 - Vaz da Cruz, Vinícius A1 - Ochmann, Miguel A1 - Ahnen, Inga von A1 - Föhlisch, Alexander A1 - Huse, Nils T1 - Breaking the symmetry of pyrimidine BT - solvent effects and core-excited state dynamics JF - The journal of physical chemistry letters N2 - Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C-2v point group, in an aqueous solution environment, using scattering though its 2a(2) resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b(2) and 11a(1) orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpclett.1c01865 SN - 1948-7185 VL - 12 IS - 35 SP - 8637 EP - 8643 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Chaurasia, Swami Vivekanandji A1 - Dietrich, Tim A1 - Rosswog, Stephan T1 - Black hole-neutron star simulations with the BAM code BT - first tests and simulations JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - The first detections of black hole-neutron star mergers (GW200105 and GW200115) by the LIGO-Virgo-Kagra Collaboration mark a significant scientific breakthrough. The physical interpretation of pre- and postmerger signals requires careful cross-examination between observational and theoretical modelling results. Here we present the first set of black hole-neutron star simulations that were obtained with the numerical-relativity code BAM. Our initial data are constructed using the public LORENE spectral library, which employs an excision of the black hole interior. BAM, in contrast, uses the moving-puncture gauge for the evolution. Therefore, we need to "stuff" the black hole interior with smooth initial data to evolve the binary system in time. This procedure introduces constraint violations such that the constraint damping properties of the evolution system are essential to increase the accuracy of the simulation and in particular to reduce spurious center-of-mass drifts. Within BAM we evolve the Z4c equations and we compare our gravitational-wave results with those of the SXS collaboration and results obtained with the SACRA code. While we find generally good agreement with the reference solutions and phase differences less than or similar to 0.5 rad at the moment of merger, the absence of a clean convergence order in our simulations does not allow for a proper error quantification. We finally present a set of different initial conditions to explore how the merger of black hole neutron star systems depends on the involved masses, spins, and equations of state. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevD.104.084010 SN - 2470-0010 SN - 2470-0029 VL - 104 IS - 8 PB - American Physical Society CY - Ridge, NY ER - TY - JOUR A1 - Feudel, Fred A1 - Feudel, Ulrike T1 - Bifurcations in rotating spherical shell convection under the influence of differential rotation JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The bifurcations of thermal convection in a rotating spherical shell heated from the inner sphere and driven by the buoyancy of a central gravity field are studied numerically. This model of spherical Rayleigh-Benard convection describes large-scale convection in planets and in the outer zones of celestial bodies. In this work, the influence of an additionally imposed differential rotation of the inner sphere with respect to the outer one on the heat transfer and, more generally, on the whole bifurcation structure is investigated. In addition to numerical simulations, path-following techniques are applied in order to compute both stable and unstable solution branches. The dynamics and the heat transfer are essentially determined by a global bifurcation, which we have identified as a homoclinic bifurcation that consists of a collision of a stable modulated rotating with an unstable rotating wave. Y1 - 2021 U6 - https://doi.org/10.1063/5.0063113 SN - 1054-1500 SN - 1089-7682 VL - 31 IS - 11 PB - AIP CY - Melville ER - TY - THES A1 - Keles, Engin T1 - Atmospheric properties and dynamics of gaseous exoplanets inferred from high-resolution alkali line transmission spectroscopy N2 - The characterization of exoplanets applying high-resolution transmission spectroscopy ini- tiated a new era making it possible to trace atmospheric signature at high altitudes in exoplanet atmospheres and to determine atmospheric properties which enrich our under- standing of the formation and evolution of the solar system. In contrast to what is observed in our solar system, where gaseous planets orbit at wide orbits, Jupiter type exoplanets were detected in foreign stellar systems surrounding their host stars within few days, in close orbits, the so called hot- and ultra-hot Jupiters. The most well studied ones are HD209458b and HD189733b, which are the first exoplanets where absorption is detected in their atmospheres, namely from the alkali line sodium. For hot Jupiters, the resonant alkali lines are the atmospheric species with one of the strongest absorption signatures, due to their large absorption cross-section. However, al- though the alkali lines sodium and potassium were detected in low-resolution observations for various giant exoplanets, potassium was absent in different high-resolution investiga- tions in contrast to sodium. The reason for this is quite puzzling, since both alkalis have very similar physical and chemical properties (e.g. condensation and ionization proper- ties). Obtaining high-resolution transit observations of HD189733b and HD209458b, we were able to detect potassium on HD189733b (Manuscript 1), which was the first high-resolution detection of potassium on an exoplanet. The absence of potassium on HD209458b could be reasoned by depletion processes, such as condensation or photo-ionization or high-altitude clouds. In a further study (Manuscript II), we resolved the potassium line and compared this to a previously detected sodium absorption on this planet. The comparison showed, that the potassium lines are either tracing different altitudes and temperatures compared to the sodium lines, or are depleted so that the planetary Na/K- ratio is way larger than the stellar one. A comparison of the alkali lines with synthetic line profiles showed that the sodium lines were much broader than the potassium lines, probably being induced by winds. To investigate this, the effect of zonal streaming winds on the sodium lines on Jupiter-type planets is investigated in a further study (Manuscript III), showing that such winds can significantly broaden the Na- lines and that high-resolution observations can trace such winds with different properties. Furthermore, investigating the Na-line observations for different exoplanets, I showed that the Na-line broadening follows a trend with cooler planets showing stronger line broadening and so hinting on stronger winds, matching well into theoretical predictions. Each presented manuscript depends on the re- sults published within the previous manuscript, yielding a unitary study of the exoplanet HD189733b. The investigation of the potassium absorption required to account for different effects: The telluric lines removal and the effect of center-to-limb variation (see Manuscript I), the residual Rossiter-Mc-Laughlin effect (see Manuscript II) and the broadening of spectral lines on a translucent atmospheric ring by zonal jet streams (see Manuscript III). This thesis shows that high-resolution transmission spectroscopy is a powerful tool to probe sharp alkali line absorption on giant exoplanet atmospheres and to investigate on the properties and dynamics of hot Jupiter type atmospheres. KW - planets and satellites: atmospheres KW - planets and satellites: composition KW - planets and satellites: gaseous planets KW - exoplanets Y1 - 2021 ER - TY - JOUR A1 - Omel'chenko, Oleh A1 - Ocampo-Espindola, Jorge Luis A1 - Kiss, István Z. T1 - Asymmetry-induced isolated fully synchronized state in coupled oscillator populations JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - A symmetry-breaking mechanism is investigated that creates bistability between fully and partially synchronized states in oscillator networks. Two populations of oscillators with unimodal frequency distribution and different amplitudes, in the presence of weak global coupling, are shown to simplify to a modular network with asymmetrical coupling. With increasing the coupling strength, a synchronization transition is observed with an isolated fully synchronized state. The results are interpreted theoretically in the thermodynamic limit and confirmed in experiments with chemical oscillators. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.L022202 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Physical Society CY - Melville, NY ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Safdari, Hadiseh A1 - Metzler, Ralf T1 - Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity BT - striking differences for massive versus massless particles JF - Journal of physics. D, Applied physics N2 - We investigate a diffusion process with a time-dependent diffusion coefficient, both exponentially increasing and decreasing in time, D(t)=D-0(e +/- 2 alpha t). For this (hypothetical) nonstationary diffusion process we compute-both analytically and from extensive stochastic simulations-the behavior of the ensemble- and time-averaged mean-squared displacements (MSDs) of the particles, both in the over- and underdamped limits. Simple asymptotic relations derived for the short- and long-time behaviors are shown to be in excellent agreement with the results of simulations. The diffusive characteristics in the presence of ageing are also considered, with dramatic differences of the over- versus underdamped regime. Our results for D(t)=D-0(e +/- 2 alpha t) extend and generalize the class of diffusive systems obeying scaled Brownian motion featuring a power-law-like variation of the diffusivity with time, D(t) similar to t(alpha-1). We also examine the logarithmically increasing diffusivity, D(t)=D(0)log[t/tau(0)], as another fundamental functional dependence (in addition to the power-law and exponential) and as an example of diffusivity slowly varying in time. One of the main conclusions is that the behavior of the massive particles is predominantly ergodic, while weak ergodicity breaking is repeatedly found for the time-dependent diffusion of the massless particles at short times. The latter manifests itself in the nonequivalence of the (both nonaged and aged) MSD and the mean time-averaged MSD. The current findings are potentially applicable to a class of physical systems out of thermal equilibrium where a rapid increase or decrease of the particles' diffusivity is inherently realized. One biological system potentially featuring all three types of time-dependent diffusion (power-law-like, exponential, and logarithmic) is water diffusion in the brain tissues, as we thoroughly discuss in the end. KW - anomalous diffusion KW - scaled Brownian motion KW - stochastic processes KW - nonstationary diffusivity KW - water diffusion in the brain KW - nonergodicity Y1 - 2021 U6 - https://doi.org/10.1088/1361-6463/abdff0 SN - 0022-3727 SN - 1361-6463 VL - 54 IS - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Laskin, Gennadii A1 - Reppert, Alexander von A1 - Bargheer, Matias T1 - Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3 JF - Structural dynamics N2 - We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Grüneisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime. KW - Thin films KW - Thermodynamic properties KW - Bragg peak KW - Ultrafast X-ray diffraction KW - Thermal effects KW - Phonons KW - Magnetism KW - Lattice dynamics KW - Lasers KW - Perovskites Y1 - 2020 U6 - https://doi.org/10.1063/4.0000072 SN - 2329-7778 VL - 8 IS - 2 PB - AIP Publishing LLC CY - Melville, NY ER -