TY - GEN A1 - Nguyen, Quyet Doan A1 - Wang, Jingwen A1 - Rychkov, Dmitry A1 - Gerhard, Reimund T1 - Depth Profile and Transport of Positive and Negative Charge in Surface (2-D) and Bulk (3-D) Nanocomposite Films T2 - 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE 2019) N2 - In the present study, the charge distribution and the charge transport across the thickness of 2- and 3-dimensional polymer nanodielectrics was investigated. Chemically surface-treated polypropylene (PP) films and low-density polyethylene nanocomposite films with 3 wt % of magnesium oxide (LDPE/MgO) served as examples of 2-D and 3-D nanodielectrics, respectively. Surface charges were deposited onto the non-metallized surfaces of the one-side metallized polymer films and found to broaden and to thus enter the bulk of the films upon thermal stimulation at suitable elevated temperatures. The resulting space-charge profiles in the thickness direction were probed by means of Piezoelectrically-generated Pressure Steps (PPSs). It was observed that the chemical surface treatment of PP which led to the formation of nano-structures or the use of bulk nanoparticles from LDPE/MgO nanocomposites enhance charge trapping on or in the respective polymer films and also reduce charge transport inside the respective samples. KW - LDPE nanocomposites KW - MgO nanoparticles KW - Space charge KW - Charge transport KW - Charge stability KW - Acoustic probing of electric-field profiles KW - Piezoelectrically generated Pressure Steps (PPSs) Y1 - 2019 SN - 978-1-5386-8434-4 SN - 978-1-5386-8435-1 U6 - https://doi.org/10.1109/ICEMPE.2019.8727256 SP - 298 EP - 300 PB - IEEE CY - New York ER - TY - GEN A1 - Wolff, Christian Michael A1 - Canil, Laura A1 - Rehermann, Carolin A1 - Nguyen, Ngoc Linh A1 - Zu, Fengshuo A1 - Ralaiarisoa, Maryline A1 - Caprioglio, Pietro A1 - Fiedler, Lukas A1 - Stolterfoht, Martin A1 - Kogikoski, Junior, Sergio A1 - Bald, Ilko A1 - Koch, Norbert A1 - Unger, Eva L. A1 - Dittrich, Thomas A1 - Abate, Antonio A1 - Neher, Dieter T1 - Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445−1456) T2 - ACS nano Y1 - 2020 U6 - https://doi.org/10.1021/acsnano.0c08081 SN - 1936-0851 SN - 1936-086X VL - 14 IS - 11 SP - 16156 EP - 16156 PB - American Chemical Society CY - Washington, DC ER - TY - GEN A1 - Waldrip, Steven H. A1 - Niven, Robert K. A1 - Abel, Markus A1 - Schlegel, Michael T1 - Consistent maximum entropy representations of pipe flow networks T2 - AIP conference proceedings N2 - The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study. Y1 - 2017 SN - 978-0-7354-1527-0 U6 - https://doi.org/10.1063/1.4985365 SN - 0094-243X VL - 1853 IS - 1 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Bolotov, Maxim A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Complex chimera states in a nonlinearly coupled oscillatory medium T2 - 2018 2nd School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR) N2 - We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. Stability calculations reveal that only some of these states are stable. The direct numerical simulation has shown that these structures under certain conditions are transformed to breathing chimera regimes because of the development of instability. Further development of instability leads to turbulent chimeras. KW - phase oscillator KW - nonlocal coupling KW - synchronization KW - chimera state KW - partial synchronization KW - phase lag KW - nonlinear dynamics Y1 - 2018 SN - 978-1-5386-5818-5 U6 - https://doi.org/10.1109/DCNAIR.2018.8589210 SP - 17 EP - 20 PB - IEEE CY - New York ER - TY - GEN A1 - Goychuk, Igor T1 - Comment on "Anomalous Escape Governed by Thermal 1/f Noise" Reply (R. K. Singh) T2 - Physical review letters Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevLett.123.238902 SN - 0031-9007 SN - 1079-7114 VL - 123 IS - 23 PB - American Physical Society CY - College Park ER - TY - GEN A1 - Metzler, Ralf T1 - Anomalous Diffusion in Membranes and the Cytoplasm of Biological Cells T2 - Biophysical journal Y1 - 2017 U6 - https://doi.org/10.1016/j.bpj.2016.11.2577 SN - 0006-3495 SN - 1542-0086 VL - 112 IS - 3 SP - 476A EP - 476A PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Kubatova, Brankica A1 - Hamann, Wolf-Rainer A1 - Kubat, Jiri A1 - Oskinova, Lida T1 - 3D Monte Carlo Radiative Transfer in Inhomogeneous Massive Star Winds BT - Application to Resonance Line Formation T2 - Radiative signatures from the cosmos N2 - Already for decades it has been known that the winds of massive stars are inhomogeneous (i.e. clumped). To properly model observed spectra of massive star winds it is necessary to incorporate the 3-D nature of clumping into radiative transfer calculations. In this paper we present our full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. We use a set of parameters to describe dense as well as the rarefied wind components. At the same time, we account for non-monotonic velocity fields. We show how the 3-D density and velocity wind inhomogeneities strongly affect the resonance line formation. We also show how wind clumping can solve the discrepancy between P v and H alpha mass-loss rate diagnostics. Y1 - 2019 SN - 978-1-58381-925-8 SN - 1050-3390 VL - 519 SP - 209 EP - 212 PB - Astronomical soc pacific CY - San Fransisco ER -