TY - JOUR A1 - Petereit, Johannes A1 - Pikovskij, Arkadij T1 - Chaos synchronization by nonlinear coupling JF - Communications in nonlinear science & numerical simulation N2 - We study synchronization properties of three nonlinearly coupled chaotic maps. Coupling is introduced in such a way, that it cannot be reduced to pairwise terms, but includes combined action of all interacting units. For two models of nonlinear coupling we characterize the transition to complete synchrony, as well as partially synchronized states. Relation to hypernetworks of chaotic units is also discussed. KW - Chaos synchronization KW - Partial synchrony KW - Intermittency KW - Hypernetwork Y1 - 2016 U6 - https://doi.org/10.1016/j.cnsns.2016.09.002 SN - 1007-5704 SN - 1878-7274 VL - 44 SP - 344 EP - 351 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bolotov, Maxim I. A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Breathing chimera in a system of phase oscillators JF - JETP Letters N2 - Chimera states consisting of synchronous and asynchronous domains in a medium of nonlinearly coupled phase oscillators have been considered. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. The direct numerical simulation has shown that these structures under certain conditions are transformed to oscillatory (breathing) chimera regimes because of the development of instability. Y1 - 2017 U6 - https://doi.org/10.1134/S0021364017180059 SN - 0021-3640 SN - 1090-6487 VL - 106 SP - 393 EP - 399 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Goldschmidt, Richard Janis A1 - Pikovskij, Arkadij A1 - Politi, Antonio T1 - Blinking chimeras in globally coupled rotators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - In globally coupled ensembles of identical oscillators so-called chimera states can be observed. The chimera state is a symmetry-broken regime, where a subset of oscillators forms a cluster, a synchronized population, while the rest of the system remains a collection of nonsynchronized, scattered units. We describe here a blinking chimera regime in an ensemble of seven globally coupled rotators (Kuramoto oscillators with inertia). It is characterized by a death-birth process, where a long-term stable cluster of four oscillators suddenly dissolves and is very quickly reborn with a new reshuffled configuration. We identify three different kinds of rare blinking events and give a quantitative characterization by applying stability analysis to the long-lived chaotic state and to the short-lived regular regimes that arise when the cluster dissolves. Y1 - 2019 U6 - https://doi.org/10.1063/1.5105367 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1188 KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524261 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Munyaev, Vyacheslav O. A1 - Smirnov, Lev A. A1 - Kostin, Vasily A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New journal of physics : the open-access journal for physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto KW - model KW - noisy systems Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab6f93 SN - 1367-2630 VL - 22 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New Journal of Physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 VL - 22 IS - 2 PB - Springer Science CY - New York ER -