TY - JOUR A1 - Kayser, Markus A1 - Maturilli, Marion A1 - Graham, Robert M. A1 - Hudson, Stephen R. A1 - Rinke, Annette A1 - Cohen, Lana A1 - Kim, Joo-Hong A1 - Park, Sang-Jong A1 - Moon, Woosok A1 - Granskog, Mats A. T1 - Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015) JF - Journal of geophysical research-atmosheres N2 - The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Alesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Alesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Alesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3 degrees C warmer than the climatology during winter. Plain Language Summary The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and the atmospheric boundary layer characteristics. During winter, we find the strongest impact of synoptic cyclones, which transport warm and moist air into the cold and dry Arctic atmosphere. In spring, incoming solar radiation warms the surface. This leads to very different thermodynamic conditions and higher moisture content, which reduces the contrast between stormy and calm periods. Further, we compare the N-ICE2015 measurements to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. The comparisons highlight the value of the N-ICE2015 observation and show the importance of winter time observations in the Arctic North Atlantic sector. Y1 - 2017 U6 - https://doi.org/10.1002/2016JD026089 SN - 2169-897X SN - 2169-8996 VL - 122 IS - 20 SP - 10855 EP - 10872 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rodriguez-Zuluaga, Juan A1 - Stolle, Claudia A1 - Yamazaki, Yosuke A1 - Lühr, H. A1 - Park, J. A1 - Scherliess, L. A1 - Chau, J. L. T1 - On the balance between plasma and magnetic pressure across equatorial plasma depletions JF - Journal of geophysical research : Space physics N2 - In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low‐latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large‐scale EPDs. The analysis is based on the magnetic fluctuations related to diamagnetic currents flowing at the edges of EPDs. This study shows that most of the EPDs detected by Swarm present a decrease of the plasma pressure relative to the ambient plasma. However, EPDs with high plasma pressure are also identified mainly in the vicinity of the South Atlantic magnetic anomaly. From the electron density measurements, we deduce that such an increase in plasma pressure within EPDs might be possible by temperatures inside the EPD as high as twice the temperature of the ambient plasma. Due to the distinct location of the high‐pressure EPDs, we suggest that a possible heating mechanism might be due to precipitation of particle from the radiation belts. This finding corresponds to the first observational evidence of plasma pressure enhancements in regions of depleted plasma density in the ionosphere. KW - equatorial plasma depletions KW - spread F KW - plasma pressure KW - magnetic pressure KW - diamagnetic currents Y1 - 2019 U6 - https://doi.org/10.1029/2019JA026700 SN - 2169-9402 VL - 124 IS - 7 SP - 5936 EP - 5944 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Quessab, Yassine A1 - Deb, Marwan A1 - Gorchon, J. A1 - Hehn, M. A1 - Malinowski, Gregory A1 - Mangin, S. T1 - Resolving the role of magnetic circular dichroism in multishot helicity-dependent all-optical switching JF - Physical review : B, Condensed matter and materials physics N2 - By conducting helicity-dependent ultrafast magnetization dynamics in a CoTb ferrimagnetic alloy, we are able to quantitatively determine the magnetic circular dichroism (MCD) and resolve its role in the helicity-dependent all-optical switching (AOS). Unequivocal interpretation of the sign of the dichroism is provided by performing AOS and femtosecond laser-induced domain wall motion experiments. We demonstrate that AOS occurs when the magnetization is initially in the most absorbent state, according to the light helicity. Moreover, we evidence that the MCD creates a thermal gradient that drives a domain wall toward hotter regions. Our experimental results are in agreement with the purely thermal models of AOS. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.100.024425 SN - 2469-9950 SN - 2469-9969 VL - 100 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sokolov, Andrey A1 - Huang, Qiushi A1 - Senf, Friedmar A1 - Feng, Jiangtao A1 - Lemke, Stephanie A1 - Alimov, Svyatoslav A1 - Knedel, Jeniffa A1 - Zeschke, Thomas A1 - Kutz, Oliver A1 - Seliger, Tino A1 - Gwalt, Grzegorz A1 - Schäfers, Franz A1 - Siewert, Frank A1 - Kozhevnikov, Igor A1 - Qi, Runze A1 - Zhang, Zhong A1 - Li, Wenbin A1 - Wang, Zhanshan T1 - Optimized highly efficient multilayer-coated blazed gratings for the tender X-ray region JF - Optics express : the international electronic journal of optics N2 - The optimized design of multilayer-coated blazed gratings (MLBG) for high-flux tender X-ray monochromators was systematically studied by numerical simulations. The resulting correlation between the multilayer d-spacing and grating blaze angle significantly deviated from the one predicted by conventional equations. Three high line density gratings with different blaze angles were fabricated and coated by the same Cr/C multilayer. The MLBG with an optimal blaze angle of 1.0 degrees showed a record efficiency reaching 60% at 3.1 keV and 4.1 keV. The measured efficiencies of all three gratings were consistent with calculated results proving the validity of the numerical simulation and indicating a more rigorous way to design the optimal MLBG structure. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Y1 - 2019 U6 - https://doi.org/10.1364/OE.27.016833 SN - 1094-4087 VL - 27 IS - 12 SP - 16833 EP - 16846 PB - Optical Society of America CY - Washington ER - TY - JOUR A1 - Zalden, Peter A1 - Quirin, Florian A1 - Schumacher, Mathias A1 - Siegel, Jan A1 - Wei, Shuai A1 - Koc, Azize A1 - Nicoul, Matthieu A1 - Trigo, Mariano A1 - Andreasson, Pererik A1 - Enquist, Henrik A1 - Shu, Michael J. A1 - Pardini, Tommaso A1 - Chollet, Matthieu A1 - Zhu, Diling A1 - Lemke, Henrik A1 - Ronneberger, Ider A1 - Larsson, Jörgen A1 - Lindenberg, Aaron M. A1 - Fischer, Henry E. A1 - Hau-Riege, Stefan A1 - Reis, David A. A1 - Mazzarello, Riccardo A1 - Wuttig, Matthias A1 - Sokolowski-Tinten, Klaus T1 - Femtosecond x-ray diffraction reveals a liquid-liquid phase transition in phase-change materials JF - Science N2 - In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid-liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics. Y1 - 2019 U6 - https://doi.org/10.1126/science.aaw1773 SN - 0036-8075 SN - 1095-9203 VL - 364 IS - 6445 SP - 1062 EP - 1067 PB - American Assoc. for the Advancement of Science CY - Washington, DC ER - TY - JOUR A1 - Betke, Alexander A1 - Lokstein, Heiko T1 - Two-photon excitation spectroscopy of photosynthetic light-harvesting complexes and pigments JF - Faraday discussions N2 - In addition to (bacterio)chlorophylls, (B)Chls, light-harvesting complexes (LHCs) bind carotenoids, and/or their oxygen derivatives, xanthophylls. Xanthophylls/carotenoids have pivotal functions in LHCs: in stabilization of the structure, as accessory light-harvesting pigments and, probably most importantly, in photoprotection. Xanthophylls are assumed to be involved in the not yet fully understood mechanism of energy-dependent (qE) non-photochemical quenching of Chl fluorescence (NPQ) in higher plants and algae. The so called "xanthophyll cycle" appears to be crucial in this regard. The molecular mechanism(s) of xanthophyll involvement in qE/NPQ have not been established, yet. Moreover, excitation energy transfer (EET) processes involving carotenoids are also difficult to study, due to the fact that transitions between the ground state (S-0, 1(1)A(g)(-)) and the lowest excited singlet state (S-1, 2(1)A(g)(-)) of carotenoids are optically one-photon forbidden ("dark"). Two-photon excitation spectroscopic techniques have been used for more than two decades to study one-photon forbidden states of carotenoids. In the current study, two-photon excitation profiles of LHCII samples containing different xanthophyll complements were measured in the presumed 1(1)A(g)(-) -> 2(1)A(g)(-) (S-0 -> S-1) transition spectral region of the xanthophylls, as well as for isolated chlorophylls a and b in solution. The results indicate that direct two-photon excitation of Chls in this spectral region is dominant over that by xanthophylls. Implications of the results for proposed mechanism(s) of qE/NPQ will be discussed. Y1 - 2019 U6 - https://doi.org/10.1039/c8fd00198g SN - 1359-6640 SN - 1364-5498 VL - 216 SP - 494 EP - 506 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Menzel, Ralf A1 - Marx, Robert A1 - Puhlmann, Dirk A1 - Heuer, Axel A1 - Schleich, Wolfgang T1 - The photon BT - the role of its mode function in analyzing complementarity JF - Journal of the Optical Society of America : B, Optical physics N2 - We investigate the role of the spatial mode function in a single-photon experiment designed to demonstrate the principle of complementarity. Our approach employs entangled photons created by spontaneous parametric downconversion from a pump mode in a TEM01 mode together with a double slit. Measuring the interference of the signal photons behind the double slit in coincidence with the entangled idler photons at different positions, we select signal photons of different mode functions. When the signal photons belong to the TEM01-like double-hump mode, we obtain almost perfect visibility of the interference fringes, and no "which slit" information is available in the idler photon detected before the slits. This result is remarkable because the entangled signal and idler photon pairs are created each time in only one of the two intensity humps. However, when we break the symmetry between the two maxima of the signal photon mode structure, the paths through the slits for these additional photons become distinguishable and the visibility vanishes. It is the mode function of the photons selected by the detection system that decides if interference or "which slit" information is accessible in the experiment. Y1 - 2019 U6 - https://doi.org/10.1364/JOSAB.36.001668 SN - 0740-3224 SN - 1520-8540 VL - 36 IS - 6 SP - 1668 EP - 1675 PB - Optical Society of America CY - Washington ER - TY - JOUR A1 - Goychuk, Igor T1 - Fractional electron transfer kinetics and a quantum breaking of ergodicity JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - The dissipative curve-crossing problem provides a paradigm for electron-transfer (ET) processes in condensed media. It establishes the simplest conceptual test bed to study the influence of the medium's dynamics on ET kinetics both on the ensemble level, and on the level of single particles. Single electron description is particularly important for nanoscaled systems like proteins, or molecular wires. Especially insightful is this framework in the semiclassical limit, where the environment can be treated classically, and an exact analytical treatment becomes feasible. Slow medium's dynamics is capable of enslaving ET and bringing it on the ensemble level from a quantum regime of nonadiabatic tunneling to the classical adiabatic regime, where electrons follow the nuclei rearrangements. This classical adiabatic textbook picture contradicts, however, in a very spectacular fashion to the statistics of single electron transitions, even in the Debye, memoryless media, also named Ohmic in the parlance of the famed spin-boson model. On the single particle level, ET always remains quantum, and this was named a quantum breaking of ergodicity in the adiabatic ET regime. What happens in the case of subdiffusive, fractional, or sub-Ohmic medium's dynamics, which is featured by power-law decaying dynamical memory effects typical, e.g., for protein macromolecules, and other viscoelastic media? Such a memory is vividly manifested by anomalous Cole-Cole dielectric response in such media. We address this question based both on accurate numerics and analytical theory. The ensemble theory remarkably agrees with the numerical dynamics of electronic populations, revealing a power-law relaxation tail even in a profoundly nonadiabatic electron transfer regime. In other words, ET in such media should typically display fractional kinetics. However, a profound difference with the numerically accurate results occurs for the distribution of residence times in the electronic states, both on the ensemble level and the level of single trajectories. Ergodicity is broken dynamically even in a more spectacular way than in the memoryless case. Our results question the applicability of all the existing and widely accepted ensemble theories of electron transfer in fractional, sub-Ohmic environments, on the level of single molecules, and provide a real challenge to face, both for theorists and experimentalists. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevE.99.052136 SN - 2470-0045 SN - 2470-0053 VL - 99 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Padash, Amin A1 - Chechkin, Aleksei V. A1 - Dybiec, Bartlomiej A1 - Pavlyukevich, Ilya A1 - Shokri, Babak A1 - Metzler, Ralf T1 - First-passage properties of asymmetric Levy flights JF - Journal of physics : A, Mathematical and theoretical N2 - Lévy flights are paradigmatic generalised random walk processes, in which the independent stationary increments—the 'jump lengths'—are drawn from an -stable jump length distribution with long-tailed, power-law asymptote. As a result, the variance of Lévy flights diverges and the trajectory is characterised by occasional extremely long jumps. Such long jumps significantly decrease the probability to revisit previous points of visitation, rendering Lévy flights efficient search processes in one and two dimensions. To further quantify their precise property as random search strategies we here study the first-passage time properties of Lévy flights in one-dimensional semi-infinite and bounded domains for symmetric and asymmetric jump length distributions. To obtain the full probability density function of first-passage times for these cases we employ two complementary methods. One approach is based on the space-fractional diffusion equation for the probability density function, from which the survival probability is obtained for different values of the stable index and the skewness (asymmetry) parameter . The other approach is based on the stochastic Langevin equation with -stable driving noise. Both methods have their advantages and disadvantages for explicit calculations and numerical evaluation, and the complementary approach involving both methods will be profitable for concrete applications. We also make use of the Skorokhod theorem for processes with independent increments and demonstrate that the numerical results are in good agreement with the analytical expressions for the probability density function of the first-passage times. KW - Levy flights KW - first-passage KW - search dynamics Y1 - 2019 U6 - https://doi.org/10.1088/1751-8121/ab493e SN - 1751-8113 SN - 1751-8121 VL - 52 IS - 45 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Haene, Janick A1 - Bruehwiler, Dominik A1 - Ecker, Achim A1 - Hass, Roland T1 - Real-time inline monitoring of zeolite synthesis by Photon Density Wave spectroscopy JF - Microporous and mesoporous materials : zeolites, clays, carbons and related materials N2 - The formation process of zeolite A (Linde Type A) was monitored inline at 1.5 L scale by Photon Density Wave (PDW) spectroscopy as novel process analytical technology for highly turbid liquid suspensions. As a result, the reduced scattering coefficient, being a measure for particle number, size, and morphology, provides distinct process information, including the formation of amorphous particles and their transfer into crystalline zeolite structures. The onset and end of the crystallization process can be detected inline and in real-time. Analyses by powder X-ray diffraction and electron microscopy, based on a sampling approach, support the interpretation of the results obtained by PDW spectroscopy. In addition, the influence of the molar water content was investigated, indicating a linear increase of the time needed to reach the end of the zeolite A crystallization with increasing molar water content. Further experiments indicate a strong influence of the silica source on the course of the crystallization. The applicability of PDW spectroscopy under even more demanding chemical and physical conditions was investigated by monitoring the synthesis of zeolite L (Linde Type L). KW - Photon density wave spectroscopy KW - Process analytical technology KW - Zeolite synthesis KW - Molar water content KW - Silica source Y1 - 2019 U6 - https://doi.org/10.1016/j.micromeso.2019.109580 SN - 1387-1811 SN - 1873-3093 VL - 288 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Goychuk, Igor T1 - Fractional Hydrodynamic Memory and Superdiffusion in Tilted Washboard Potentials JF - Physical review letters N2 - Diffusion in tilted washboard potentials can paradoxically exceed free normal diffusion. The effect becomes much stronger in the underdamped case due to inertial effects. What happens upon inclusion of usually neglected fractional hydrodynamics memory effects (Basset-Boussinesq frictional force), which result in a heavy algebraic tail of the velocity autocorrelation function of the potential-free diffusion making it transiently superdiffusive? Will a giant enhancement of diffusion become even stronger, and the transient superdiffusion last even longer? These are the questions that we answer in this Letter based on an accurate numerical investigation. We show that a resonancelike enhancement of normal diffusion becomes indeed much stronger and sharper. Moreover, a long-lasting transient regime of superdiffusion, including Richardson-like diffusion, proportional to t(3) and ballistic supertransport, proportional to t(2), is revealed. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevLett.123.180603 SN - 0031-9007 SN - 1079-7114 VL - 123 IS - 18 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Vojta, Thomas A1 - Skinner, Sarah A1 - Metzler, Ralf T1 - Probability density of the fractional Langevin equation with reflecting walls JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate anomalous diffusion processes governed by the fractional Langevin equation and confined to a finite or semi-infinite interval by reflecting potential barriers. As the random and damping forces in the fractional Langevin equation fulfill the appropriate fluctuation-dissipation relation, the probability density on a finite interval converges for long times towards the expected uniform distribution prescribed by thermal equilibrium. In contrast, on a semi-infinite interval with a reflecting wall at the origin, the probability density shows pronounced deviations from the Gaussian behavior observed for normal diffusion. If the correlations of the random force are persistent (positive), particles accumulate at the reflecting wall while antipersistent (negative) correlations lead to a depletion of particles near the wall. We compare and contrast these results with the strong accumulation and depletion effects recently observed for nonthermal fractional Brownian motion with reflecting walls, and we discuss broader implications. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevE.100.042142 SN - 2470-0045 SN - 2470-0053 VL - 100 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Granado, Felipe Le Vot A1 - Abad, Enrique A1 - Metzler, Ralf A1 - Yuste, Santos B. T1 - Continuous time random walk in a velocity field BT - role of domain growth, Galilei-invariant advection-diffusion, and kinetics of particle mixing JF - New Journal of Physics N2 - We consider the emerging dynamics of a separable continuous time random walk (CTRW) in the case when the random walker is biased by a velocity field in a uniformly growing domain. Concrete examples for such domains include growing biological cells or lipid vesicles, biofilms and tissues, but also macroscopic systems such as expanding aquifers during rainy periods, or the expanding Universe. The CTRW in this study can be subdiffusive, normal diffusive or superdiffusive, including the particular case of a Lévy flight. We first consider the case when the velocity field is absent. In the subdiffusive case, we reveal an interesting time dependence of the kurtosis of the particle probability density function. In particular, for a suitable parameter choice, we find that the propagator, which is fat tailed at short times, may cross over to a Gaussian-like propagator. We subsequently incorporate the effect of the velocity field and derive a bi-fractional diffusion-advection equation encoding the time evolution of the particle distribution. We apply this equation to study the mixing kinetics of two diffusing pulses, whose peaks move towards each other under the action of velocity fields acting in opposite directions. This deterministic motion of the peaks, together with the diffusive spreading of each pulse, tends to increase particle mixing, thereby counteracting the peak separation induced by the domain growth. As a result of this competition, different regimes of mixing arise. In the case of Lévy flights, apart from the non-mixing regime, one has two different mixing regimes in the long-time limit, depending on the exact parameter choice: in one of these regimes, mixing is mainly driven by diffusive spreading, while in the other mixing is controlled by the velocity fields acting on each pulse. Possible implications for encounter–controlled reactions in real systems are discussed. KW - diffusion KW - expanding medium KW - continuous time random walk Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab9ae2 SN - 1367-2630 VL - 22 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - JOUR A1 - Metzler, Ralf T1 - Brownian motion and beyond: first-passage, power spectrum, non-Gaussianity, and anomalous diffusion JF - Journal of statistical mechanics: theory and experiment N2 - Brownian motion is a ubiquitous physical phenomenon across the sciences. After its discovery by Brown and intensive study since the first half of the 20th century, many different aspects of Brownian motion and stochastic processes in general have been addressed in Statistical Physics. In particular, there now exists a very large range of applications of stochastic processes in various disciplines. Here we provide a summary of some of the recent developments in the field of stochastic processes, highlighting both the experimental findings and theoretical frameworks. KW - 15 KW - 4 Y1 - 2019 U6 - https://doi.org/10.1088/1742-5468/ab4988 SN - 1742-5468 VL - 2019 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Velk, Natalia T1 - Investigation of the interaction of lysozyme with poly(l-lysine)/hyaluronic acid multilayers BT - Fluorescence and ATR-FTIR study Y1 - 2022 ER - TY - JOUR A1 - Mardoukhi, Ahmad A1 - Mardoukhi, Yousof A1 - Hokka, Mikko A1 - Kuokkala, Veli-Tapani T1 - Effects of heat shock on the dynamic tensile behavior of granitic rocks JF - Rock mechanics and rock engineering N2 - This paper presents a new experimental method for the characterization of the surface damage caused by a heat shock on a Brazilian disk test sample. Prior to mechanical testing with a Hopkinson Split Pressure bar device, the samples were subjected to heat shock by placing a flame torch at a fixed distance from the sample’s surface for periods of 10, 30, and 60 s. The sample surfaces were studied before and after the heat shock using optical microscopy and profilometry, and the images were analyzed to quantify the damage caused by the heat shock. The complexity of the surface crack patterns was quantified using fractal dimension of the crack patterns, which were used to explain the results of the mechanical testing. Even though the heat shock also causes damage below the surface which cannot be quantified from the optical images, the presented surface crack pattern analysis can give a reasonable estimate on the drop rate of the tension strength of the rock. KW - SHPB KW - Rock KW - Granite KW - DIC KW - Dynamic loading KW - Fractal dimension Y1 - 2017 U6 - https://doi.org/10.1007/s00603-017-1168-4 SN - 0723-2632 SN - 1434-453X VL - 50 SP - 1171 EP - 1182 PB - Springer CY - Wien ER - TY - GEN A1 - Mawass, Mohamad-Assaad A1 - Arora, Ashima A1 - Sandig, Oliver A1 - Luo, Chen A1 - Unal, Ahmet A. A1 - Radu, Florin A1 - Valencia, Sergio A1 - Kronast, Florian T1 - Spatially resolved investigation of all optical magnetization switching in TbFe alloys T2 - 2018 IEEE International Magnetics Conference (INTERMAG) N2 - High storage density magnetic devices rely on the precise, reliable and ultrafast switching times of the magnetic states. Optical control of magnetization using femtosecond laser without applying any external magnetic field offers the advantage of switching magnetic states at ultrashort time scales, which has attracted a significant attention. Recently, it has been reported and demonstrated the,so-called, all-optical helicity-dependent switching (AO-HDS) in which a circularly polarized femtosecond laser pulse switches the magnetization of a ferromagnetic thin film as function of laser helicity [1]. Afterward, in more recent studies, it has been reported that AO-HDS is a general phenomenon existing in magnetic materials ranging from rare earth - transition metals ferrimagnetic (e.g. alloys, multilayers and hetero-structures system) to even ferromagnetic thin films. Among numerous studies in the literature which are discussing the microscopic origin of AO-HDS in ferromagnets or ferrimagnetic alloys, the most renowned concepts are momentum transfer via Inverse Faraday Effect (IFE) [1-3]and the concept of preferential thermal demagnetization for one magnetization direction by heating close to Tc (Curie temperature) in the presence of magnetic circular dichroism (MCD) [4-6]. In this study, we investigate all-optical magnetic switching using a stationary femtosecond laser spot (3-5 μm) in TbFe alloys via photoemission electron microscopy (PEEM) and x-ray magnetic circular dichroism (XMCD) with a spatial resolution of approximately 30 nm. We spatially characterize the effect of laser heating and local temperature profile created across the laser spot on AO-HDS in TbFe thin films. We find that AO-HDS occurs only in a `ring' shaped region surrounding the thermally demagnetized region formed by the laser spot and the formation of switched domains relies further on thermally induced domain wall motion. Our temperature dependent measurements highlight the importance of attainin... Y1 - 2018 SN - 978-1-5386-6425-4 U6 - https://doi.org/10.1109/INTMAG.2018.8508211 PB - IEEE CY - New York ER - TY - JOUR A1 - Heydari, Esmaeil A1 - Pastoriza-Santos, Isabel A1 - Liz-Marzan, Luis M. A1 - Stumpe, Joachim T1 - Nanoplasmonically-engineered random lasing in organic semiconductor thin films JF - Nanoscale horizons N2 - We demonstrate plasmonically nano-engineered coherent random lasing and stimulated emission enhancement in a hybrid gainmedium of organic semiconductors doped with core-shell plasmonic nanoparticles. The gain medium is composed of a 300 +/- 2 nm thin waveguide of an organic semiconductor, doped with 53 nm gold nanoparticle cores, isolated within silica shells. Upon loading the nanoparticles, the threshold of amplified spontaneous emission is reduced from 1.75 mu J cm(-2) x 10(2) for an undoped gain medium, to 0.35 mu J cm(-2) x 10(2) for a highly concentrated gain medium, and lasing spikes narrower than 0.1 nm are obtained. Most importantly, selection of silica shells with thicknesses of 10, 17 and 21 nm enables engineering of the plasmon-exciton energy coupling and consequently tuning of the laser slope efficiency. With this approach, the slope efficiency is increased by two times by decreasing the silica shell from 21 nm down to 10 nm, due to the enhancement of the localized electric field. Y1 - 2017 U6 - https://doi.org/10.1039/c7nh00054e SN - 2055-6756 SN - 2055-6764 VL - 2 SP - 261 EP - 266 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Rychkov, Andrey A1 - Stojharov, Valery A1 - Kuznetsov, Alexey A1 - Rychkov, Dmitry T1 - The influence of recrystallization regimes on electret charge stability in low-density polyethylene films T2 - 2018 IEEE 2nd International Conference on Dielectrics (ICD) N2 - The electret state stability in nonpolar semicrystalline polymers is largely determined by the traps located at crystalline/ amorphous phase interfaces. Thus, the thermal history of such polymers should considerably influence their electret properties. In the present work, we investigate how recrystallization influences charge stability in low-density polyethylene corona electrets. It has been found that electret charge stability in quenched samples is higher than in slowly-crystallized ones. Phenomenologicaly, this can be explained by the increased number of deeper traps in samples with smaller crystallite size. KW - electrets KW - low-density polyethylene KW - crystallinity KW - quenching KW - recrystallization Y1 - 2018 SN - 978-1-5386-6389-9 SN - 978-1-5386-6388-2 SN - 978-1-5386-6390-5 U6 - https://doi.org/10.1109/ICD.2018.8514638 PB - IEEE CY - New York ER - TY - JOUR A1 - Kretschmer, Marlene A1 - Coumou, Dim A1 - Agel, Laurie A1 - Barlow, Mathew A1 - Tziperman, Eli A1 - Cohen, Judah T1 - More-Persistent weak stratospheric polar vortex states linked to cold extremes JF - Bulletin of the American Meteorological Society N2 - The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80% when El Nino-Southern Oscillation (ENSO) variability is included as well. Y1 - 2018 U6 - https://doi.org/10.1175/BAMS-D-16-0259.1 SN - 0003-0007 SN - 1520-0477 VL - 99 IS - 1 SP - 49 EP - 60 PB - American Meteorological Soc. CY - Boston ER -