TY - THES A1 - Kniepert, Juliane T1 - Correlation between dynamic parameters and device performance of organic solar cells T1 - Zusammenhang zwischen den dynamischen Größen und der Effizienz Organischer Solarzellen N2 - Organic bulk heterojunction (BHJ) solar cells based on polymer:fullerene blends are a promising alternative for a low-cost solar energy conversion. Despite significant improvements of the power conversion efficiency in recent years, the fundamental working principles of these devices are yet not fully understood. In general, the current output of organic solar cells is determined by the generation of free charge carriers upon light absorption and their transport to the electrodes in competition to the loss of charge carriers due to recombination. The object of this thesis is to provide a comprehensive understanding of the dynamic processes and physical parameters determining the performance. A new approach for analyzing the characteristic current-voltage output was developed comprising the experimental determination of the efficiencies of charge carrier generation, recombination and transport, combined with numerical device simulations. Central issues at the beginning of this work were the influence of an electric field on the free carrier generation process and the contribution of generation, recombination and transport to the current-voltage characteristics. An elegant way to directly measure the field dependence of the free carrier generation is the Time Delayed Collection Field (TDCF) method. In TDCF charge carriers are generated by a short laser pulse and subsequently extracted by a defined rectangular voltage pulse. A new setup was established with an improved time resolution compared to former reports in literature. It was found that charge generation is in general independent of the electric field, in contrast to the current view in literature and opposed to the expectations of the Braun-Onsager model that was commonly used to describe the charge generation process. Even in cases where the charge generation was found to be field-dependend, numerical modelling showed that this field-dependence is in general not capable to account for the voltage dependence of the photocurrent. This highlights the importance of efficient charge extraction in competition to non-geminate recombination, which is the second objective of the thesis. Therefore, two different techniques were combined to characterize the dynamics and efficiency of non-geminate recombination under device-relevant conditions. One new approach is to perform TDCF measurements with increasing delay between generation and extraction of charges. Thus, TDCF was used for the first time to measure charge carrier generation, recombination and transport with the same experimental setup. This excludes experimental errors due to different measurement and preparation conditions and demonstrates the strength of this technique. An analytic model for the description of TDCF transients was developed and revealed the experimental conditions for which reliable results can be obtained. In particular, it turned out that the $RC$ time of the setup which is mainly given by the sample geometry has a significant influence on the shape of the transients which has to be considered for correct data analysis. Secondly, a complementary method was applied to characterize charge carrier recombination under steady state bias and illumination, i.e. under realistic operating conditions. This approach relies on the precise determination of the steady state carrier densities established in the active layer. It turned out that current techniques were not sufficient to measure carrier densities with the necessary accuracy. Therefore, a new technique {Bias Assisted Charge Extraction} (BACE) was developed. Here, the charge carriers photogenerated under steady state illumination are extracted by applying a high reverse bias. The accelerated extraction compared to conventional charge extraction minimizes losses through non-geminate recombination and trapping during extraction. By performing numerical device simulations under steady state, conditions were established under which quantitative information on the dynamics can be retrieved from BACE measurements. The applied experimental techniques allowed to sensitively analyse and quantify geminate and non-geminate recombination losses along with charge transport in organic solar cells. A full analysis was exemplarily demonstrated for two prominent polymer-fullerene blends. The model system P3HT:PCBM spincast from chloroform (as prepared) exhibits poor power conversion efficiencies (PCE) on the order of 0.5%, mainly caused by low fill factors (FF) and currents. It could be shown that the performance of these devices is limited by the hole transport and large bimolecular recombination (BMR) losses, while geminate recombination losses are insignificant. The low polymer crystallinity and poor interconnection between the polymer and fullerene domains leads to a hole mobility of the order of 10^-7 cm^2/Vs which is several orders of magnitude lower than the electron mobility in these devices. The concomitant build up of space charge hinders extraction of both electrons and holes and promotes bimolecular recombination losses. Thermal annealing of P3HT:PCBM blends directly after spin coating improves crystallinity and interconnection of the polymer and the fullerene phase and results in comparatively high electron and hole mobilities in the order of 10^-3 cm^2/Vs and 10^-4 cm^2/Vs, respectively. In addition, a coarsening of the domain sizes leads to a reduction of the BMR by one order of magnitude. High charge carrier mobilities and low recombination losses result in comparatively high FF (>65%) and short circuit current (J_SC ≈ 10 mA/cm^2). The overall device performance (PCE ≈ 4%) is only limited by a rather low spectral overlap of absorption and solar emission and a small V_OC, given by the energetics of the P3HT. From this point of view the combination of the low bandgap polymer PTB7 with PCBM is a promising approach. In BHJ solar cells, this polymer leads to a higher V_OC due to optimized energetics with PCBM. However, the J_SC in these (unoptimized) devices is similar to the J_SC in the optimized blend with P3HT and the FF is rather low (≈ 50%). It turned out that the unoptimized PTB7:PCBM blends suffer from high BMR, a low electron mobility of the order of 10^-5 cm^2/Vs and geminate recombination losses due to field dependent charge carrier generation. The use of the solvent additive DIO optimizes the blend morphology, mainly by suppressing the formation of very large fullerene domains and by forming a more uniform structure of well interconnected donor and acceptor domains of the order of a few nanometers. Our analysis shows that this results in an increase of the electron mobility by about one order of magnitude (3 x 10^-4 cm^2/Vs), while BMR and geminate recombination losses are significantly reduced. In total these effects improve the J_SC (≈ 17 mA/cm^2) and the FF (> 70%). In 2012 this polymer/fullerene combination resulted in a record PCE for a single junction OSC of 9.2%. Remarkably, the numerical device simulations revealed that the specific shape of the J-V characteristics depends very sensitively to the variation of not only one, but all dynamic parameters. On the one hand this proves that the experimentally determined parameters, if leading to a good match between simulated and measured J-V curves, are realistic and reliable. On the other hand it also emphasizes the importance to consider all involved dynamic quantities, namely charge carrier generation, geminate and non-geminate recombination as well as electron and hole mobilities. The measurement or investigation of only a subset of these parameters as frequently found in literature will lead to an incomplete picture and possibly to misleading conclusions. Importantly, the comparison of the numerical device simulation employing the measured parameters and the experimental $J-V$ characteristics allows to identify loss channels and limitations of OSC. For example, it turned out that inefficient extraction of charge carriers is a criticical limitation factor that is often disobeyed. However, efficient and fast transport of charges becomes more and more important with the development of new low bandgap materials with very high internal quantum efficiencies. Likewise, due to moderate charge carrier mobilities, the active layer thicknesses of current high-performance devices are usually limited to around 100 nm. However, larger layer thicknesses would be more favourable with respect to higher current output and robustness of production. Newly designed donor materials should therefore at best show a high tendency to form crystalline structures, as observed in P3HT, combined with the optimized energetics and quantum efficiency of, for example, PTB7. N2 - Organische Solarzellen aus Polymer-Fulleren Mischschichten sind eine vielversprechende Alternative für eine kostengünstige Quelle erneuerbarer Energien. Jedoch sind trotz intensiver Forschung und bedeutenden Verbesserungen der Effizienzen während der letzten Jahre, die fundamentalen Prozesse in diesen Solarzellen noch immer nicht vollständig verstanden. Im Allgemeinen wird der Photostrom in organischen Solarzellen durch die Generation freier Ladungsträger nach Absorption von Licht und dem anschliessenden Transport dieser Ladungsträger zu den Elektroden bestimmt, wobei ein Teil durch Rekombination verloren geht. Das Ziel dieser Dissertation ist es, zu einem umfassenden Verständnis aller dynamischen Prozesse und relevanten physikalischen Parameter und deren Zusammenhang mit der Solarzelleneffizienz beizutragen. Dabei wurde eine neue Herangehensweise zur Analyse der Strom-Spannungskennlinien entwickelt, die auf der experimentellen Bestimmung von Ladungsträgergeneration, Rekombination und Transport im Vergleich mit numerischen Simulationen beruht. Die zentralen Fragestellungen zu Beginn der Arbeit waren, in welchem Masse die Ladungsträgergeneration von der Stärke des elektrischen Feldes abhängt und in wie weit die einzelnen Prozesse Generation, Rekombination und Transport zum charakteristischen Verlauf der Strom-Spannungskennlinie beitragen. Eine elegante Methode um direkt die Feldabhängigkeit der Ladungsträgergeneration zu bestimmen, ist die Time Delayed Collection Field (TDCF) Methode. Dabei werden in der Solarzelle Ladungsträger mit einem kurzen Laserpuls erzeugt und anschliessend mit einem wohldefinierten rechteckigen Spannungspuls extrahiert. Im Rahmen dieser Arbeit wurde ein neuer Versuchsaufbau mit stark verbesserter Zeitauflösung im Vergleich zu vorangegangenen Arbeiten aufgebaut. Es hat sich gezeigt, dass die Generation im Allgemeinen nicht vom elektrischen Feld abhängt. Dies steht im Widerspruch zu dem in der Literatur häufig verwendeten Braun-Onsager Modell zur Beschreibung der Ladungsgeneration. Selbst in Fällen, in denen eine feldabhängige Generation gemessen wurde, reichte diese im Allgemeinen nicht aus, um die Spannungsabhängigkeit des Photostroms in diesen Zellen zu erklären. Dies führt zu der zunehmenden Bedeutung einer effizienten Ladungsextraktion in Konkurrenz zur nicht-geminalen Rekombination, welche die zweite wichtige Fragestellung in dieser Arbeit war. Dazu wurden zwei neue Herangehensweisen zur Messung der Rekombinationsdynamik unter Solarzellen-relevanten Messbedingungen erarbeitet. Zum Einen wurde zum ersten Mal TDCF zur Messung von Rekombination und Transport verwendet. Der Vorteil ist, dass die Messung aller drei relevanten Prozesse in einem Versuchsaufbau zu einer höheren Genauigkeit führt, da experimentelle Fehler durch unterschiedliche Probenpräparation und Messbedingungen ausgeschlossen werden können. Es wurde ein analytisches Modell zur Beschreibung der TDCF Transienten entwickelt, welches direkt Rückschlüsse auf die notwendigen Messbedingungen erlaubt, unter denen zuverlässige Ergebnisse erzielt werden können. Insbesondere hat sich dabei gezeigt, dass die RC-Zeit des Aufbaus, die hauptsächlich durch die Probengeometrie bestimmt wird, einen wesentlichen Einfluss auf die Transienten hat, welcher in der Datenauswertung nicht vernachlässigt werden darf. Zum Anderen wurde eine komplementäre Methode zur Messung der Rekombination im Gleichgewicht benutzt, die auf der genauen Bestimmung der statischen Ladungsträgerdichte unter Beleuchtung basiert. Es zeigte sich, dass die in der Literatur etablierten Methoden zur Ladungsträgerbestimmung nicht ausreichend genau waren. Daher wurde eine neue, sensitive Technik entwickelt, die Bias Assisted Charge Extraction (BACE) Methode. Dabei werden die unter kontinuierlicher Beleuchtung generierten Ladungsträger mit einem hohen angelegten elektrischen Feld extrahiert. Dies führt zu einer beschleunigten Extraktion im Vergleich zur konventionellen Charge Extraction Methode, welche die Verluste durch Rekombination und Trapping deutlich reduziert. Mit Hilfe von numerischen Simulationen wurden Bedingungen festgelegt, unter denen zuverlässige Messungen mit BACE möglich sind. Mit den vorgestellten Methoden können alle relevanten Parameter für Generation, Rekombination und Transport experimentell sehr genau bestimmt und analysiert werden. Dies wurde exemplarisch für zwei in der Literatur bedeutende Materialsysteme durchgeführt. Das Modellsystem P3HT:PCBM, hergestellt aus dem Lösungsmittel Chloroform, weist direkt nach der Präparation nur sehr niedrige Effizienzen im Bereich von 0.5% auf, die vor allem durch niedrige Ströme und Füllfaktoren (FF) gekennzeichnet sind. Es konnte gezeigt werden, dass die Effizienz dieser Zellen durch den sehr langsamen Lochtransport und die starke bimolekulare Rekombination begrenzt wird, während Verluste durch geminale Rekombination eher unbedeutend sind. Eine geringe Kristallinität des Polymers und schlechte Verbindungen zwischen den Polymerdomänen führt zu einer Lochmobilität von nur 10^7 cm^2/Vs. Diese ist mehrere Grössenordnungen kleiner als die Elektronenmobilität in diesen Zellen, was den Aufbau von Raumladungen zur Folge hat und damit die Extraktion von beiden Ladungsträgern behindert und bimolekulare Rekombination begünstigt. Die thermische Behandlung der P3HT:PCBM Proben direkt nach dem Spin Coating verbessert sowohl die Kristallinität als auch die Vernetzung der Polymer- und Fullerenphasen. Dies führt zu vergleichsweise hohen Mobilitäten für Elektronen (10^3 cm^2/Vs) und Löcher (10^4 cm^2/Vs). Zusätzlich reduziert eine Vergrösserung der Domänenstruktur die bimolekulare Rekombination um eine Grössenordnung. Die hohen Mobilitäten und niedrigen Rekombinationverluste resultieren in vergleichsweise hohen FF (> 65%) und Strömen (J_SC ≈ 10 mA/cm^2). Die Effizienz (≈ 4%) wird dabei nur durch den eher geringen spektralen Überlapp zwischen Absorptions- und Sonnenemissionsspektrum begrenzt und einer geringen Leerlaufspannung (V_OC), verursacht durch die ungünstige Energetik des P3HT. Aus dieser Perspektive ist die Kombination des Low-Bandgap Polymers PTB7 mit dem Fullerenderivat PCBM ein vielversprechender Ansatz. Aufgrund der angepassten Energetik führt diese Kombination in Mischschichtsolarzellen zu einer höheren V_OC. Jedoch ist der Kurzschlussstrom (J_SC) in den unoptimierten Zellen gegenüber dem der optimierten P3HT:PCBM Zellen nicht erhöht und die FF sind niedrig (≈ 50%). Die Untersuchungen ergaben, dass die Dynamik in den unoptimierten PTB7:PCBM Zellen durch hohe bimolekulare Rekombination (BMR), eine niedrige Elektronenmobilität im Bereich von 10^5 cm^2/Vs und nicht-geminalen Rekombinationsverslusten aufgrund einer feldabhängigen Generation geprägt ist. Die Zugabe des Lösungsmitteladditivs DIO bei der Probenpräparation optimiert die Morphologie in der Schicht. Dabei wird hauptsächlich die Formation von sehr grossen Fullerendomänen unterdrückt und eine gleichmässige Struktur von gut vernetzten, nanometergrossen Donor- und Akzeptordomänen ausgebildet. Unsere Analyse zeigt, dass dadurch die Elektronenmobilität um ca eine Grössenordnung erhöht wird (auf 3 x 10^4 cm^2/Vs), während BMR und geminale Rekombination deutlich unterdrückt werden. Zusammen genommen verbessern diese Effekte sowohl den J_SC (≈ 17 mA/cm^2) als auch den FF (> 70%). Im Jahr 2012 führten die optimierten PTB7:PCBM Solarzellen damit zu einer Rekordeffizienz für organische Solarzellen von 9.2%. Von grösserer Bedeutung ist jedoch, dass der Vergleich zwischen den gemessenen und simulierten Strom-Spannungskennlinien, mit experimentell bestimmten Eingangsparametern, Rückschlüsse auf die entsprechenden Verlustkanäle in den jeweiligen Solarzellen erlaubt. Hierbei zeigte sich, dass die effiziente Extraktion von Ladungsträgern ein kritischer Faktor ist, der in der Literatur oft unterschätzt wird. Der effiziente und schnelle Transport von Ladungen wird aber gerade im Hinblick auf neue Low-Bandgap Materialien mit sehr hohen internen Quanteneffizienzen immer wichtiger. Moderate Mobilitäten limitieren die möglichen Schichtdicken auf ca 100 nm. Grössere Schichtdicken wären jedoch vorteilhafter im Hinblick auf höhere Ausgangsströme und der Robustheit des Produktionsprozesses. Neu entwickelte Donormaterialien sollten daher sowohl möglichst kristalline Strukturen ausbilden mit einhergehenden hohen Mobilitäten, wie beim P3HT, als auch optimierte Energieniveaus und Quanteneffizienzen aufweisen, wie beispielsweise PTB7. KW - organic solar cells KW - optoelectronic measurements KW - transient methods KW - numeric device simulations KW - organische Solarzellen KW - optoelektronische Messungen KW - transiente Messmethoden KW - numerische Bauteilsimulationen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90087 ER - TY - THES A1 - Mitzscherling, Steffen T1 - Polyelectrolyte multilayers for plasmonics and picosecond ultrasonics T1 - Multischichten aus Polyelektrolyten in der Pikosekundenakustik und Plasmonik N2 - This thesis investigates the application of polyelectrolyte multilayers in plasmonics and picosecond acoustics. The observed samples were fabricated by the spin-assisted layer-by-layer deposition technique that allowed a precise tuning of layer thickness in the range of few nanometers. The first field of interest deals with the interaction of light-induced localized surface plasmons (LSP) of rod-shaped gold nanoparticles with the particles' environment. The environment consists of an air phase and a phase of polyelectrolytes, whose ratio affects the spectral position of the LSP resonance. Measured UV-VIS spectra showed the shift of the LSP absorption peak as a function of the cover layer thickness of the particles. The data are modeled using an average dielectric function instead of the dielectric functions of air and polyelectrolytes. In addition using a measured dielectric function of the gold nanoparticles, the position of the LSP absorption peak could be simulated with good agreement to the data. The analytic model helps to understand the optical properties of metal nanoparticles in an inhomogeneous environment. The second part of this work discusses the applicability of PAzo/PAH and dye-doped PSS/PAH polyelectrolyte multilayers as transducers to generate hypersound pulses. The generated strain pulses were detected by time-domain Brillouin scattering (TDBS) using a pump-probe laser setup. Transducer layers made of polyelectrolytes were compared qualitatively to common aluminum transducers in terms of measured TDBS signal amplitude, degradation due to laser excitation, and sample preparation. The measurements proved that fast and easy prepared polyelectrolyte transducers provided stronger TDBS signals than the aluminum transducer. AFM topography measurements showed a degradation of the polyelectrolyte structures, especially for the PAzo/PAH sample. To quantify the induced strain, optical barriers were introduced to separate the transducer material from the medium of the hypersound propagation. Difficulties in the sample preparation prohibited a reliable quantification. But the experiments showed that a coating with transparent polyelectrolytes increases the efficiency of aluminum transducers and modifies the excited phonon distribution. The adoption of polyelectrolytes to the scientific field of picosecond acoustics enables a cheap and fast fabrication of transducer layers on most surfaces. In contrast to aluminum layers the polyelectrolytes are transparent over a wide spectral range. Thus, the strain modulation can be probed from surface and back. N2 - Diese Doktorarbeit behandelt die Verwendung von Multischichtsystemen aus Polyelektrolyten in den Fachgebieten der Plasmonik und der Pikosekunden-Akustik. Die verwendeten Proben wurden mit dem Spincoater-gestützten Layer-by-Layer-Verfahren hergestellt. Diese Methode ermöglichte die Einstellung Schichtdicke mit einer Präzision von wenigen Nanometern. Im Bereich der Plasmonik wurde die Wechselwirkung von Oberflächenplasmonen stabförmiger Gold-Nanopartikel mit deren Umgebung untersucht. Diese Umgebung bestand aus zwei Phasen: Polyelektrolyte und Luft. Das Volumenverhältnis der Materialien bestimmte die spektrale Position des Oberflächenplasmons. Bei zunehmender Einbettung der Goldpartikel zeigten die gemessenen UV-VIS Spektren eine Rotverschiebung der Plasmonenabsorption. Es wurde ein Modell entwickelt, das die inhomogene Umgebung der Partikel durch eine mittlere dieelekrische Funktion beschreibt. Nachdem die dielektrische Funktion der Goldpartikel in separaten Messungen bestimmt waren, konnte die Lage der Plasmonenabsorption berechnet werden. Die Berechnungen stimmten dabei mit den Messwerten überein. Mit diesem analytischen Modell ist es möglich, die optischen Eigenschaften von metallischen Nanopartikeln in einer inhomogenene Umgebung zu verstehen. Der zweite Teil dieser Arbeit diskutiert die Anwendbarkeit von polyelektrolytischen Multischichten aus PAzo/PAH bzw. Porphyrin-dotiertem PSS/PAH für die Erzeugung von Hyperschallpulsen. Die erzeugten Schallpulse wurden durch zeitaufgelöste Brillouin-Streuung in einem sogenannten pump-probe Aufbau detektiert. Schallerzeugende Schichten aus Polyelektrolyten wurden mit Wandlern aus Aluminium verglichen. Die Messungen zeigten, dass die Polyelektrolyte sehr gut für die Erzeugung von Schallpulsen geeignet sind. Der einfachen Probenpräparation und der guten Effizienz steht jedoch eine geringe Zerstörschwelle gegenüber. AFM-Messungen zeigten besonders bei den PAzo/PAH Multischichten sehr starke Veränderungen in der Struktur. Eine Quantisierung der induzierten Schallamplitude sollte durch eine optische Trennung von Wandler und Propagationmedium erreicht werden. Da die Trennschichten auch eine akustische Abkopplung bewirkten, ließen sich die Schallamplituden nicht bestimmen. Es wurde jedoch festgestellt, dass sich die Effizienz eines Aluminium-Wandlers durch das Aufbringen transparenter Polyelektrolytschichten deutlich steigern lässt. Die Herstellung von Ultraschall-Wandlern aus Polyelektrolyten erweitert die Möglichkeiten der Pikosekunden-Akustik. Zum einen können diese Wandler schnell und kostengünstig direkt auf fast jeder Oberfläche aufgebracht werden. Zum anderen sind Polyelektrolyte in einem breiten Spektralbereich transparent. Das ermöglicht Messungen von der Vorderseite, die bei herkömmlichen Aluminium-Wandlern nicht oder nur schwer realisierbar sind. KW - polyelectrolyte KW - plasmonics KW - picosecond acoustics KW - hypersound KW - nanoparticle KW - Polyelektrolyte KW - Pikosekundenakustik KW - Hyperschall KW - Plasmonik KW - Nanopartikel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-80833 ER - TY - GEN A1 - Mitzscherling, Steffen A1 - Cui, Qianling A1 - Koopman, Wouter-Willem Adriaan A1 - Bargheer, Matias T1 - Dielectric function of two-phase colloid–polymer nanocomposite N2 - The plasmon resonance of metal nanoparticles determines their optical response in the visible spectral range. Many details such as the electronic properties of gold near the particle surface and the local environment of the particles influence the spectra. We show how the cheap but highly precise fabrication of composite nanolayers by spin-assisted layer-by-layer deposition of polyelectrolytes can be used to investigate the spectral response of gold nanospheres (GNS) and gold nanorods (GNR) in a self-consistent way, using the established Maxwell–Garnett effective medium (MGEM) theory beyond the limit of homogeneous media. We show that the dielectric function of gold nanoparticles differs from the bulk value and experimentally characterize the shape and the surrounding of the particles thoroughly by SEM, AFM and ellipsometry. Averaging the dielectric functions of the layered surrounding by an appropriate weighting with the electric field intensity yields excellent agreement for the spectra of several nanoparticles and nanorods with various cover-layer thicknesses. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 305 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102695 SP - 29465 EP - 29474 ER - TY - THES A1 - Maerten, Lena T1 - Spectroscopic perspectives on ultrafast coupling phenomena in perovskite oxides T1 - Spektroskopische Untersuchung ultraschneller Kopplungsphänomene in Perowskit-Oxiden N2 - In this thesis, I study ultrafast dynamics in perovskite oxides using time resolved broadband spectroscopy. I focus on the observation of coherent phonon propagation by time resolved Brillouin scattering: following the excition of metal transducer films with a femtosecond infrared pump pulse, coherent phonon dynamics in the GHz frequency range are triggered. Their propagation is monitored using a delayed white light probe pulse. The technique is illustrated on various thin films and multilayered samples. I apply the technique to investigate the linear and nonlinear acoustic response in bulk SrTiO_3, which displays a ferroelastic phase transition from a cubic to a tetragonal structural phase at T_a=105 K. In the linear regime, I observe a coupling of the observed acoustic phonon mode to the softening optic modes describing the phase transition. In the nonlinear regime, I find a giant slowing down of the sound velocity in the low temperature phase that is only observable for a strain amplitude exceeding the tetragonality of the material. It is attributed to a coupling of the high frequency phonons to ferroelastic domain walls in the material. I propose a new mechanism for the coupling of strain waves to the domain walls that is only effective for high amplitude strain. A detailed study of the phonon attenuation across a wide temperature range shows that the phonon attenuation at low temperatures is influenced by the domain configuration, which is determined by interface strain. Preliminary measurements on magnetic-ferroelectric multilayers reveal that the excitation fluence needs to be carefully controlled when dynamics at phase transitions are studied. N2 - In dieser Doktorarbeit untersuche ich ultraschnelle Dynamik in perovskitischen Oxiden mittels zeitaufgelöster optischer Spektroskopie. Der Schwerpunkt liegt dabei auf Phononendynamik, die mithilfe von zeitaufgelöster Brillouin-Streuung sichtbar gemacht wird: durch die Anregung einer metallischen Transducer-Schicht mit einem ultrakurzen Anregepuls wird eine kohärente Phononendynamik im GHz Frequenzbereich erzeugt. Die Ausbreitung der Schallpulse wird mit einem Weißlicht-Abfragepuls aufgezeichnet. Diese Methode wird am Beispiel verschiedener Dünnschicht- und Übergitterproben illustriert. Die Methode und das gewonnene Verständnis wende ich an, um lineare und nichtlineare akustische Eigenschaften an einem SrTiO_3-Kristall zu untersuchen. Dieser weist einen ferroelastischen Phasenübergang von kubischer zu tetragonaler Kristallstruktur bei T_a=105 K auf. Im linearen Regime beobachte ich eine Kopplung der untersuchten akustischen Mode an eine weichwerdende optische Mode, welche den Phasenübergang charakterisiert. Im nichtlinearen Regime tritt eine gigantische Verlangsamung der Schallgeschwindigkeit unterhalb von T_a auf, wenn die induzierte Gitterverzerrung die Tetragonalität des Materials übersteigt. Dies kann auf eine Kopplung der hochfrequenten akustischen Mode an ferroelastische Domänenwände bei tiefen Temperaturen zurückgeführt werden. Ich entwickle einen neuen Mechanismus, der die Kopplung der Verzerrungswelle an die Domänenwände beschreibt. Eine detaillierte Untersuchung der Phononendämpfung in SrTiO_3 über einen weiten Temperaturbereich zeigt, dass diese bei tiefen Temperaturen durch die Domänenkonfiguration beeinflusst ist. Die Domänenkonfiguration ist durch Verzerrungen an der Kristall-Transducer Grenzfläche bestimmt. Erste Untersuchungen an magnetisch-ferroelektrischen Übergittern zeigen, dass die Anregungsfluenz vorsichtig eingestellt werden muss, um die Dynamik an Phasenübergängen zu untersuchen. KW - coherent phonons KW - phonon dynamics KW - time resolved KW - Brillouin scattering KW - perovskite oxides KW - optical spectroscopy KW - hypersound propagation KW - phonon damping KW - domain wall motion KW - phonon backfolding KW - superlattice dispersion KW - kohärente Phononen KW - Phononen Dynamik KW - zeitaufgelöst KW - Brillouin Streuung KW - Perowskit-Oxide KW - optische Spektroskopie KW - Hyperschall Propagation KW - Phononen Dämpfung KW - Domänenwandbewegung KW - Phononen Rückfaltung KW - Übergitter Dispersion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77623 ER -