TY - THES A1 - Hosseini, Seyed Mehrdad T1 - Non-Langevin Recombination in Fullerene and Non-Fullerene Acceptor Solar Cells T1 - Nicht-Langevin-Rekombination in Fulleren- und Nicht-Fulleren-Akzeptor-Solarzellen N2 - Organic solar cells (OSCs), in recent years, have shown high efficiencies through the development of novel non-fullerene acceptors (NFAs). Fullerene derivatives have been the centerpiece of the accepting materials used throughout organic photovoltaic (OPV) research. However, since 2015 novel NFAs have been a game-changer and have overtaken fullerenes. However, the current understanding of the properties of NFAs for OPV is still relatively limited and critical mechanisms defining the performance of OPVs are still topics of debate. In this thesis, attention is paid to understanding reduced-Langevin recombination with respect to the device physics properties of fullerene and non-fullerene systems. The work is comprised of four closely linked studies. The first is a detailed exploration of the fill factor (FF) expressed in terms of transport and recombination properties in a comparison of fullerene and non-fullerene acceptors. We investigated the key reason behind the reduced FF in the NFA (ITIC-based) devices which is faster non-geminate recombination relative to the fullerene (PCBM[70]-based) devices. This is then followed by a consideration of a newly synthesized NFA Y-series derivative which exhibits the highest power conversion efficiency for OSC at the time. Such that in the second study, we illustrated the role of disorder on the non-geminate recombination and charge extraction of thick NFA (Y6-based) devices. As a result, we enhanced the FF of thick PM6:Y6 by reducing the disorder which leads to suppressing the non-geminate recombination toward non-Langevin system. In the third work, we revealed the reason behind thickness independence of the short circuit current of PM6:Y6 devices, caused by the extraordinarily long diffusion length of Y6. The fourth study entails a broad comparison of a selection of fullerene and non-fullerene blends with respect to charge generation efficiency and recombination to unveil the importance of efficient charge generation for achieving reduced recombination. I employed transient measurements such as Time Delayed Collection Field (TDCF), Resistance dependent Photovoltage (RPV), and steady-state techniques such as Bias Assisted Charge Extraction (BACE), Temperature-Dependent Space Charge Limited Current (T-SCLC), Capacitance-Voltage (CV), and Photo-Induce Absorption (PIA), to analyze the OSCs. The outcomes in this thesis together draw a complex picture of multiple factors that affect reduced-Langevin recombination and thereby the FF and overall performance. This provides a suitable platform for identifying important parameters when designing new blend systems. As a result, we succeeded to improve the overall performance through enhancing the FF of thick NFA device by adjustment of the amount of the solvent additive in the active blend solution. It also highlights potentially critical gaps in the current experimental understanding of fundamental charge interaction and recombination dynamics. N2 - Organische Solarzellen (OSZ) haben in den letzten Jahren durch die Entwicklung neuartiger Nicht-Fulleren-Akzeptoren (NFA) hohe Wirkungsgrade erzielt. Fulleren-Derivate waren das Herzstück der Akzeptor-Materialien, die in der Forschung zur organischen Photovoltaik (OPV) verwendet wurden. Doch seit 2015 haben neuartige NFAs den Fullerenen den Rang abgelaufen. Allerdings ist das derzeitige Verständnis der Eigenschaften von NFA für OPV noch relativ begrenzt und kritische Mechanismen, die die Leistung von OPV bestimmen, sind immer noch Gegenstand von Diskussionen. In dieser Arbeit geht es um das Verständnis der Reduced-Langevin-Rekombination in Hinblick auf die bauteilphysikalischen Eigenschaften von Fulleren- und Nicht-Fulleren-Systemen. Die Arbeit besteht aus vier eng miteinander verbundenen Studien. Die erste ist eine detaillierte Untersuchung des Füllfaktors (FF), ausgedrückt als Transport- und Rekombinationseigenschaften in einem Vergleich von Fulleren und Nicht-Fulleren-Akzeptoren. Wir untersuchten den Hauptgrund für die geringere FF im NFA-Bauelement (auf ITIC-Basis), nämlich die schnellere nicht-geminate Rekombination im Vergleich zum Fulleren-Bauelement (auf PCBM[70]-Basis). Anschließend wird ein neu synthetisiertes NFA-Derivat der Y-Serie betrachtet, das derzeit die höchste Leistungsumwandlungseffizienz für OSZ aufweist. In der zweiten Studie veranschaulichten wir die Rolle der Unordnung bei der nicht-geminaten Rekombination und der Ladungsextraktion von dicken NFA-Bauelementen (auf Y6-Basis). Infolgedessen haben wir die FF von dickem PM6:Y6 verbessert, indem wir die Unordnung reduziert haben, was zur Unterdrückung der nicht-geminaten Rekombination in Richtung Nicht-Langevin-System führt. In der dritten Arbeit haben wir den Grund für die Dickenunabhängigkeit des Kurzschlussstroms von NFA-Bauelementen aufgedeckt, die durch die außerordentlich lange Diffusionslänge von Y6 verursacht wird. Die vierte Studie umfasst einen umfassenden Vergleich einer Auswahl von Fulleren- und Nicht-Fulleren-Mischungen in Hinblick auf die Effizienz der Ladungserzeugung und Rekombination, um die Bedeutung einer effizienten Ladungserzeugung zum Erzielen einer geringeren Rekombination aufzuzeigen. Zur Analyse der OSCs habe ich transiente Messungen wie das Time Delayed Collection Field (TDCF), Resistance dependent Photovoltage (RPV) sowie stationäre Techniken wie die Bias Assisted Charge Extraction (BACE), Temperature-Dependent Space Charge Limited Current (T-SCLC), Capacitance-Voltage (CV) und Photo-Induce Absorption (PIA) eingesetzt. Die Ergebnisse dieser Arbeit zeichnen ein komplexes Bild zahlreicher Faktoren, die die Rekombination nach dem Prinzip des reduzierten Langèvins und damit die FF und die Gesamtleistung beeinflussen. Dies bietet eine geeignete Plattform zum Identifizieren wichtiger Parameter bei der Entwicklung neuer Mischsysteme. So ist es uns gelungen, die Gesamtleistung zu verbessern, indem wir die FF der dicken NFA-Vorrichtung durch Anpassung der Menge des Lösungsmittelzusatzes in der aktiven Mischungslösung erhöht haben. Außerdem werden potenziell kritische Lücken im derzeitigen experimentellen Verständnis der grundlegenden Ladungswechselwirkung und Rekombinationsdynamik aufgezeigt. KW - Organic solar cells KW - Non-fullerene acceptors KW - Charge recombination KW - Non-Langevin systems KW - Structural and energetic disorder KW - Ladungsrekombination KW - Nicht-Langevin-Systeme KW - Nicht-Fulleren-Akzeptoren KW - Organische Solarzellen KW - Strukturelle und energetische Unordnung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-547831 ER - TY - THES A1 - Sun, Bowen T1 - Energy losses in low-offset organic solar cells T1 - Energieverluste in organischen Solarzellen mit geringer Versetzung BT - from fundamental understanding to characterization considerations BT - von grundlegendem Verständnis bis zu Charakterisierungsüberlegungen N2 - Organic solar cells (OSCs) represent a new generation of solar cells with a range of captivating attributes including low-cost, light-weight, aesthetically pleasing appearance, and flexibility. Different from traditional silicon solar cells, the photon-electron conversion in OSCs is usually accomplished in an active layer formed by blending two kinds of organic molecules (donor and acceptor) with different energy levels together. The first part of this thesis focuses on a better understanding of the role of the energetic offset and each recombination channel on the performance of these low-offset OSCs. By combining advanced experimental techniques with optical and electrical simulation, the energetic offsets between CT and excitons, several important insights were achieved: 1. The short circuit current density and fill-factor of low-offset systems are largely determined by field-dependent charge generation in such low-offset OSCs. Interestingly, it is strongly evident that such field-dependent charge generation originates from a field-dependent exciton dissociation yield. 2. The reduced energetic offset was found to be accompanied by strongly enhanced bimolecular recombination coefficient, which cannot be explained solely by exciton repopulation from CT states. This implies the existence of another dark decay channel apart from CT. The second focus of the thesis was on the technical perspective. In this thesis, the influence of optical artifacts in differential absorption spectroscopy upon the change of sample configuration and active layer thickness was studied. It is exemplified and discussed thoroughly and systematically in terms of optical simulations and experiments, how optical artifacts originated from non-uniform carrier profile and interference can manipulate not only the measured spectra, but also the decay dynamics in various measurement conditions. In the end of this study, a generalized methodology based on an inverse optical transfer matrix formalism was provided to correct the spectra and decay dynamics manipulated by optical artifacts. Overall, this thesis paves the way for a deeper understanding of the keys toward higher PCEs in low-offset OSC devices, from the perspectives of both device physics and characterization techniques. N2 - Organische Solarzellen (OSZ) repräsentieren eine neue Generation von Solarzellen mit einer Vielzahl faszinierender Eigenschaften, darunter geringe Kosten, geringes Gewicht, ästhetisch ansprechendes Erscheinungsbild und Flexibilität. Im Gegensatz zu traditionellen Silizium-Solarzellen erfolgt die Umwandlung von Photonen in Elektronen in OSZ in der Regel in einer aktiven Schicht, die durch das Mischen von zwei Arten organischer Moleküle (Donator und Akzeptor) mit unterschiedlichen Energieniveaus gebildet wird. Der erste Teil dieser Arbeit konzentriert sich auf ein besseres Verständnis der Rolle des energetischen Versatzes und jedes Rekombinationskanals auf die Leistung dieser OSCs mit geringem Versatz. Durch die Kombination fortschrittlicher experimenteller Techniken mit optischer und elektrischer Simulation wurden wichtige Erkenntnisse über die energetischen Versätze zwischen CT und Exzitonen erlangt: 1. Die Stromdichte im Kurzschluss und der Füllfaktor von Systemen mit geringem Versatz werden weitgehend durch feldabhängige Ladungsgenerierung in solchen OSZ mit geringem Versatz bestimmt. Interessanterweise ist deutlich erkennbar, dass eine feldabhängige Ladungsgenerierung aus einer feldabhängigen Exzitonen-Dissociationsausbeute resultiert. 2. Der reduzierte energetische Versatz geht mit einem stark erhöhten bimolekularen Rekombinationskoeffizienten einher, der nicht allein durch die Wiederbevölkerung von Exzitonen aus CT-Zuständen erklärt werden kann. Dies deutet auf die Existenz eines anderen dunklen Zerfallsweges neben CT hin. Der zweite Schwerpunkt der Arbeit lag auf der technischen Perspektive. In dieser Arbeit wurde der Einfluss von optischen Artefakten in der differentiellen Absorptionsspektroskopie auf die Änderung der Probekonfiguration und der aktiven Schichtdicke untersucht. Es wird anhand optischer Simulationen und Experimente ausführlich und systematisch dargelegt und diskutiert, wie optische Artefakte, die durch ein nicht gleichmäßiges Ladungsprofil und Interferenzen verursacht werden, nicht nur die gemessenen Spektren, sondern auch die Zerfalldynamik in verschiedenen Messbedingungen manipulieren können. Am Ende dieser Studie wurde eine generalisierte Methodik auf Basis eines inversen optischen Übertragungsmatrixformalismus bereitgestellt, um die durch optische Artefakte manipulierten Spektren und Zerfalldynamiken zu korrigieren. Insgesamt ebnet diese Arbeit den Weg für ein tieferes Verständnis der Schlüsselaspekte für höhere Wirkungsgrade in OSZ mit geringem Versatz, sowohl aus Sicht der Gerätephysik als auch der Charakterisierungstechniken. KW - organic solar cell KW - organische Solarzelle KW - non-fullerene acceptors KW - Nicht-Fulleren-Akzeptoren KW - charge generation KW - Ladungsgenerierung KW - exciton dissociation KW - Exziton-Dissoziation KW - cavity effects KW - Hohlraumeffekte Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-621430 ER - TY - THES A1 - Sajedi, Maryam T1 - Investigation of metal-halide-perovskites by state-of-the-art synchrotron-radiation methods T1 - Untersuchung von Metallhalogenid-Perowskiten mit modernsten Synchrotronstrahlungsmethoden N2 - My thesis chiefly aims to shed light on the favourable properties of LHP semiconductors from the point of view of their electronic structure. Currently, various hypotheses are circulating to explain the exceptionally favourable transport properties of LHPs. Seeking an explanation for the low non-radiative recombination rates and long carrier lifetimes is particularly interesting to the halide perovskites research community. The first part of this work investigates the two main hypotheses that are believed to play a significant role: the existence of a giant Rashba effect and large polarons. The experimental method of ARPES is mainly applied to verify their credibility. The first hypothesis presumes that a giant Rashba effect restricts the recombination losses of the charge carriers by making the band gap slightly indirect. The Rashba effect is based on a strong SOC that could appear in LHPs thanks to incorporating the heavy element Pb in their structure. Earlier experimental work had pointed out this effect at the VBM of a hybrid LHP as a viable explanation for the long lifetimes of the charge carriers. My systematic ARPES studies on hybrid MAPbBr3 and spin-resolved ARPES studies on the inorganic CsPbBr3 disprove the presence of any Rashba effect in the VBM of the reported order of magnitude. Therefore, neither the spin texture nor an indirect band gap character at the VBM in the bulk or at the surface can explain the high efficiency of LHP. In case of existence, this effect is in terms of the Rashba parameter at least a factor of a hundred smaller than previously assumed. The second hypothesis proposes large polaron formation in the electronic structure of LHPs and attributes it to their high defect tolerance and low non-radiative recombination rate. Because the perovskite structure consists of negative and positive ions, polarons of this kind can be expected due to the Coulomb interaction between carriers and the polar lattice at intermediate electron-phonon coupling strength. Their existence is proposed to screen the carriers and defects to avoid recombination and trapping, thus leading to long carrier lifetimes. ARPES results by one group supported this assumption, reporting a 50% effective mass enhancement over the theoretical effective mass for CsPbBr3 in the orthorhombic structure. The current thesis examines this hypothesis experimentally by photon-energy-dependent ARPES spectra and theoretically by GW band calculations of CsPbBr3 perovskites. The investigation is based on the fact that a polaron contribution in charge transport can become evident by an increase of the effective mass as measured by ARPES over the calculated one without polaron effects. However, my experiments on crystalline CsPbBr3 did not imply a larger effective mass for which one could postulate large polarons. In fact, the effective masses determined from ARPES agree with that of theoretical predictions. The second part of my thesis thoroughly investigates the possibility of spontaneously magnetizing LHPs by introducing Mn2+ ions. Mn doping was reported to cause ferromagnetism in one of the most common LHPs, MAPbI3, mediated by super-exchange. The current work investigates the magnetic properties of a wide concentration range of Mn-doped MAPbI3 and triple-cation films by XAS, XMCD, and SQUID measurements. Based on the XAS line shape and a sum-rule analysis of the XMCD spectra, a pure Mn2+ configuration has been confirmed. Negative Curie temperatures are extracted from fitting the magnetization with a Curie-Weiss law. However, a remanent magnetization, which would be an indication of the absence of ferromagnetism down to 2K. As far as the double exchange is concerned, the element-specific XAS excludes a sufficient amount of Mn3+ as a prerequisite for this mechanism. All the findings show no evidence of significant double exchange or ferromagnetism in Mn-doped LHPs. The magnetic behavior is paramagnetic rather than ferromagnetic. In the dissertation's last chapter, orthorhombic features of CsPbBr3 are revealed by ARPES, including an extra VBM at the Γ-point. The VBM of CsPbBr3 shows a temperature-dependent splitting, which decreases by 190 meV between 38K and 300K and tracks a shift of a saddle point at the cubic M-point. It is possible to reproduce the energy shift using an atomic model with a larger unit cell for room temperature, allowing local inversion symmetry breaking. This indicates the importance of electric dipoles for the inorganic LHPs, which may contribute to their high efficiency by breaking inversion symmetry and a Berry-phase effect. N2 - In meiner Dissertation geht es vor allem darum, die vorteilhaften Eigenschaften von LHP ausgehend von ihrer elektronischen Struktur zu beleuchten. Derzeit kursieren zahlreiche Hypothesen, um die außergewöhnlich guten Transporteigenschaften von LHPs zu erklären. Die Suche nach einer Erklärung für die niedrigen strahlungslosen Rekombinationsraten und die langen Ladungsträgerlebensdauern ist von besonderem Interesse für die Forschercommunity der Halogenidperowskite. Der erste Teil dieser Arbeit untersucht die beiden Haupthypothesen, von denen angenommen wird, dass sie eine wichtige Rolle spielen: die Existenz eines riesigen Rashba-Effekts und großer Polaronen. Hier wird hauptsächlich die experimentelle Methode der ARPES angewandt, um ihre Glaubwürdigkeit zu überprüfen. Die erste Hypothese geht davon aus, dass ein riesiger Rashba-Effekt die Rekombinationsverluste der Ladungsträger einschränkt, indem er die Bandlücke leicht indirekt macht. Der Rashba-Effekt basiert auf einer starken Spin-Bahn-Wechselwirkung, die in LHPs, dank der Präsenz des schweren Elements Pb in ihrer Struktur, potenziell auftreten könnte. Eine frühere experimentelle Arbeit hatte diesen Effekt am VBM eines hybriden LHP als mögliche Erklärung für die langen Lebensdauern der Ladungsträger vorgeschlagen. Meine systematischen ARPES-Studien am hybriden MAPbBr3 sowie die winkel- und spinaufgelösten ARPES-Studien am anorganischen CsPbBr3 widerlegen das Vorhandensein eines riesigen Rashba-Effekts im VBM in der angegebenen Größenordnung. Daher können weder die Spin-Textur noch der indirekte Bandlückencharakter am VBM im Volumen oder an der Oberfläche die hohe Effizienz von LHP erklären. Dieser Effekt ist, falls er existiert, mindestens um einen Faktor hundert kleiner als bisher angenommen. Die zweite Hypothese geht von der Bildung großer Polaronen in der elektronischen Struktur von LHPs aus, welche zu ihrer hohen Defekttoleranz und niedrigen strahlungslosen Rekombination srate beitragen soll. Da die Perowskit Struktur aus negativen und positiven Ionen besteht, sind solche Polaronen wegen der Coulomb-Wechselwirkung zwischen Ladungsträger und Ionengitter bei mittlerer Stärke der Elektron-Phonon-Kopplung zu erwarten. Es wird angenommen, dass sie die Ladungsträger und Defekte abschirmen, was Rekombination und Trapping verhindert und zu langen Ladungsträgerlebensdauern führt. Die ARPES-Ergebnisse einer Gruppe stützen diese Annahme und zeigen, dass die effektive Masse von CsPbBr3 um 50% höher ist als die theoretische effektive Masse für die orthorhombische Phase. In der vorliegenden Arbeit wird diese Hypothese experimentell mit Hilfe von Photonenenergie-abhängigen ARPES-Spektren und theoretisch mit Hilfe von GW-Bandstrukturberechnungen an CsPbBr3-Perowskiten untersucht. Denn der Beitrag von Polaronen zum Ladungstransport lässt sich durch eine Zunahme der mit ARPES gemessenen effektiven-Masse nachweisen. Meine Experimente an kristallinem CsPbBr3 ergaben jedoch keine erhöhte effektive Masse, für die man große Polaronen postulieren könnte. Tatsächlich stimmen die aus ARPES ermittelten effektiven Massen gut mit den theoretischen Vorhersagen überein. Der zweite Teil meiner Dissertation untersucht die Möglichkeit, LHPs durch den Einbau von Mn2+ Ionen spontan zu magnetisieren. Es wurde berichtet, dass die Mn-Dotierung in einem der häufigsten LHPs - \MAPbI3 - Ferromagnetismus durch "Superaustausch" hervorruft. Außerdem berichteten zwei weitere Arbeiten über Ferromagnetismus sogar bei Raumtemperatur, hervorgerufen jedoch durch Doppalaustausch. In der vorliegenden Arbeit werden die magnetischen Eigenschaften eines weiten Konzentrationsbereichs von Mn-dotiertem MAPbI3 und Dreifachkation-Filmen mittels XAS, XMCD und SQUID-Messungen untersucht. Basierend auf der XAS-Linienform und der Summenregelanalyse der XMCD-Spektren wurde eine reine Mn2+ Konfiguration bestätigt. Negative Curie-Temperaturen werden aus einem Fit der Magnetisierung mit dem Curie-Weiss-Gesetz abgeleitet. Eine remanente Magnetisierung, die auf Ferromagnetismus hindeuten würde, wird jedoch bis hinunter zu 2K nicht beobachtet. Was den Doppelaustausch betrifft, so schließt die elementspezifische XAS eine ausreichende Menge an Mn3+ als Voraussetzung für diesen Mechanismus aus. Nach all diesen Erkenntnissen gibt es keinen Hinweis auf einen signifikanten Doppelaustausch oder Ferromagnetismus in Mn-dotierten LHP. Das magnetische Verhalten ist eher paramagnetisch als ferromagnetisch. Im letzten Kapitel der Dissertation werden orthorhombische ARPES-Strukturen bei CsPbBr3 beobachtet, einschließlich eines zusätzlichen VBM am Γ-Punkt. Das VBM von CsPbBr3 zeigt eine temperaturabhängige Aufspaltung, die zwischen 38K und 300 K um 190 meV abnimmt und von einer Verschiebung eines Sattelpunktes am kubischen M-Punkt stammt. Es ist möglich, die Energieverschiebung mit atomaren Model mit größerer Einzeitszelle für Raumtemperatur, eine Brechung der lokalen Inversionssymmetrie zulässt, zu reproduzieren. Dies deutet auf die Bedeutung elektrischer Dipole für anorganische LHP hin, die zu ihrer hohen Effizienz durch Brechung der Inversionssymmetrie und einen Berry-Phasen-Effekt beitragen könnten. KW - lead halide perovskites (LHP) KW - valence band (VB) KW - valence band maximum (VBM) KW - Brillouin zone (BZ) KW - surface Brillouin zone (SBZ) KW - Spin-orbi coupling (SOC) KW - Brillouin-Zone (BZ) KW - Bleihalogenid-Perowskite (BHP) KW - Oberflächen-Brillouin-Zone (OBZ) KW - Valenzband (VB) KW - Valenzbandmaximum (VBM) KW - Spin-Bahn-Wechselwirkung (SBW) Y1 - 2023 ER - TY - THES A1 - Maiti, Snehanshu T1 - Magnetohydrodynamic turbulence and cosmic ray transport T1 - Magnetohydrodynamische Turbulenz und Transport kosmischer Strahlung N2 - The first part of the thesis studies the properties of fast mode in magneto hydro-dynamic (MHD) turbulence. 1D and 3D numerical simulations are carried out to generate decaying fast mode MHD turbulence. The injection of waves are carried out in a collinear and isotropic fashion to generate fast mode turbulence. The properties of fast mode turbulence are analyzed by studying their energy spectral density, 2D structure functions and energy decay/cascade time. The injection wave vector is varied to study the dependence of the above properties on the injection wave vectors. The 1D energy spectrum obtained for the velocity and magnetic fields has 𝐸 (𝑘) ∝ 𝑘−2. The 2D energy spectrum and 2D structure functions in parallel and perpendicular directions shows that fast mode turbulence generated is isotropic in nature. The cascade/decay rate of fast mode MHD turbulence is proportional to 𝑘−0.5 for different kinds of wave vector injection. Simulations are also carried out in 1D and 3D to compare balanced and imbalanced turbulence. The results obtained shows that while 1D imbalanced turbulence decays faster than 1D balanced turbulence, there is no difference in the decay of 3D balanced and imbalanced turbulence for the current resolution of 512 grid points. "The second part of the thesis studies cosmic ray (CR) transport in driven MHD turbulence and is strongly dependent on it’s properties. Test particle simulations are carried out to study CR interaction with both total MHD turbulence and decomposed MHD modes. The spatial diffusion coefficients and the pitch angle scattering diffusion coefficients are calculated from the test particle trajectories in turbulence. The results confirms that the fast modes dominate the CR propagation, whereas Alfvén, slow modes are much less efficient with similar pitch angle scattering rates. The cross field transport on large and small scales are investigated next. On large/global scales, normal diffusion is observed and the diffusion coefficient is suppressed by 𝑀𝜁𝐴 compared to the parallel diffusion coefficients, with 𝜁 closer to 4 in Alfvén modes than that in total turbulence as theoretically expected. For the CR transport on scales smaller than the turbulence injection scale 𝐿, both the local and global magnetic reference frames are adopted. Super diffusion is observed on such small scales in all the cases. Particularly, CR transport in Alfvén modes show clear Richardson diffusion in the local reference frame. The diffusion transition smoothly from the Richardson’s one with index 1.5 to normal diffusion as particle’s mean free path decreases from 𝜆∥ ≫ 𝐿 to 𝜆∥ ≪ 𝐿. These results have broad applications to CRs in various astrophysical environments". N2 - Der erste Teil der Arbeit untersucht die Eigenschaften des schnellen Modus in magnetohydrodynamischen (MHD) Turbulenzen. Es werden numerische 1D- und 3D-Simulationen durchgeführt, um eine abklingende Fast-Mode-MHD-Turbulenz zu erzeugen. Die Injektion von Wellenvektoren wird kollinear und isotrop durchgeführt, um Fast-Mode-Turbulenzen zu erzeugen. Die Eigenschaften der Fast-Mode-Turbulenz werden durch die Untersuchung ihrer Energie-Spektraldichte, 2D-Strukturfunktionen und Energieabfall-/Kaskadenzeit analysiert. Die Injektionswellenvektoren werden in verschiedenen Simulationen für unterschiedliche Arten der Injektion variiert, um die Abhängigkeit der oben genannten Eigenschaften von den Injektionswellenvektoren zu untersuchen. Das für die Geschwindigkeits- und Magnetfelder erhaltene 1D-Energiespektrum hat E(k) ∝ k−2. Das 2D-Energiespektrum und die 2D-Strukturfunktionen in parallelen und senkrechten Richtungen zeigen, dass die erzeugte Fast-Mode-Turbulenz von Natur aus isotrop ist. Die Kaskaden-/Zerfallsrate der Fast-Mode-MHD-Turbulenz ist proportional zu k−0.5 für verschiedene Arten der Wellenvektorinjektion. Es werden auch Simulationen in 1D und 3D durchgeführt, um ausgeglichene und unausgeglichene Turbulenzen zu vergleichen. Die Ergebnisse zeigen, dass eine unausgewogene 1D-Turbulenz schneller abklingt als eine ausgeglichene 1D-Turbulenz, während es bei der derzeitigen Auflösung von 512 Gitterpunkten keinen Unterschied im Abklingen von ausgeglichener und unausgewogener 3D-Turbulenz gibt. Der zweite Teil der Arbeit untersucht den Transport kosmischer Strahlung (CR) in angetriebenen MHD-Turbulenzen und ist stark von deren Eigenschaften abhängig. Es werden Testpartikelsimulationen durchgeführt, um die Wechselwirkung von kosmischer Strahlung sowohl mit der gesamten MHD-Turbulenz als auch mit zerlegten MHD-Moden zu untersuchen. Aus den Flugbahnen der Testteilchen in der Turbulenz werden die räumlichen Diffusionskoeffizienten und die Diffusionskoeffizienten für die Streuung im Neigungswinkel berechnet. Die Ergebnisse bestätigen, dass die schnellen Moden die CR-Ausbreitung dominieren, während Alfv´en langsame Moden bei ähnlichen Neigungswinkelstreuungsraten viel weniger effizient sind. Der Querfeldtransport auf großen und kleinen Skalen wird als nächstes untersucht. Auf großen/globalen Skalen wird normale Diffusion beobachtet und der Diffusionskoeffizient wird durch MζA im Vergleich zu den parallelen Diffusionskoeffizienten unterdrückt, wobei ζin Alfv´en-Moden näher bei 4 liegt als in der Gesamtturbulenz, wie theoretisch erwartet. Für den CR-Transport auf Skalen, die kleiner sind als die Turbulenzinjektionsskala L, werden sowohl der lokale als auch der globale magnetische Bezugsrahmen verwendet. Auf solch kleinen Skalen wird in allen Fällen Superdiffusion beobachtet. Insbesondere der CRTransport in Alfv’en-Moden zeigt eine deutliche Richardson-Diffusion im lokalen Bezugssystem. Die Diffusion geht fließend von der Richardson-Diffusion mit dem Index 1,5 zur normalen Diffusion über, wenn die mittlere freie Weglänge der Teilchen, λ∥, von λ∥ ≫ L auf λ∥ ≪ L abnimmt. Diese Ergebnisse haben eine breite Anwendung auf CRs in verschiedenen astrophysikalischen Umgebungen. KW - isotropic fast mode turbulence KW - cascade rate KW - Alfv´en mode MHD turbulence KW - cosmic ray diffusion KW - efficient scattering KW - mean free path KW - Richardson Superdiffusion KW - Alfv´en-Modus MHD-Turbulenz KW - Richardson-Superdiffusion KW - Kaskadenrate KW - Diffusion kosmischer Strahlung KW - effiziente Streuung KW - Isotroper schneller Modus Turbulenzen KW - bedeuten freie Bahn Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589030 ER - TY - THES A1 - Zeuschner, Steffen Peer T1 - Magnetoacoustics observed with ultrafast x-ray diffraction N2 - In the present thesis I investigate the lattice dynamics of thin film hetero structures of magnetically ordered materials upon femtosecond laser excitation as a probing and manipulation scheme for the spin system. The quantitative assessment of laser induced thermal dynamics as well as generated picosecond acoustic pulses and their respective impact on the magnetization dynamics of thin films is a challenging endeavor. All the more, the development and implementation of effective experimental tools and comprehensive models are paramount to propel future academic and technological progress. In all experiments in the scope of this cumulative dissertation, I examine the crystal lattice of nanoscale thin films upon the excitation with femtosecond laser pulses. The relative change of the lattice constant due to thermal expansion or picosecond strain pulses is directly monitored by an ultrafast X-ray diffraction (UXRD) setup with a femtosecond laser-driven plasma X-ray source (PXS). Phonons and spins alike exert stress on the lattice, which responds according to the elastic properties of the material, rendering the lattice a versatile sensor for all sorts of ultrafast interactions. On the one hand, I investigate materials with strong magneto-elastic properties; The highly magnetostrictive rare-earth compound TbFe2, elemental Dysprosium or the technological relevant Invar material FePt. On the other hand I conduct a comprehensive study on the lattice dynamics of Bi1Y2Fe5O12 (Bi:YIG), which exhibits high-frequency coherent spin dynamics upon femtosecond laser excitation according to the literature. Higher order standing spinwaves (SSWs) are triggered by coherent and incoherent motion of atoms, in other words phonons, which I quantified with UXRD. We are able to unite the experimental observations of the lattice and magnetization dynamics qualitatively and quantitatively. This is done with a combination of multi-temperature, elastic, magneto-elastic, anisotropy and micro-magnetic modeling. The collective data from UXRD, to probe the lattice, and time-resolved magneto-optical Kerr effect (tr-MOKE) measurements, to monitor the magnetization, were previously collected at different experimental setups. To improve the precision of the quantitative assessment of lattice and magnetization dynamics alike, our group implemented a combination of UXRD and tr-MOKE in a singular experimental setup, which is to my knowledge, the first of its kind. I helped with the conception and commissioning of this novel experimental station, which allows the simultaneous observation of lattice and magnetization dynamics on an ultrafast timescale under identical excitation conditions. Furthermore, I developed a new X-ray diffraction measurement routine which significantly reduces the measurement time of UXRD experiments by up to an order of magnitude. It is called reciprocal space slicing (RSS) and utilizes an area detector to monitor the angular motion of X-ray diffraction peaks, which is associated with lattice constant changes, without a time-consuming scan of the diffraction angles with the goniometer. RSS is particularly useful for ultrafast diffraction experiments, since measurement time at large scale facilities like synchrotrons and free electron lasers is a scarce and expensive resource. However, RSS is not limited to ultrafast experiments and can even be extended to other diffraction techniques with neutrons or electrons. N2 - In der vorliegenden Arbeit untersuche ich die Gitterdynamik von magnetisch geordneten und dünnen Filmen, deren Spinsystem mit Femtosekunden-Laserpulsen angeregt und untersucht wird. Die Quantifizierung der laserinduzierten thermischen Dynamik, der erzeugten Pikosekunden-Schallpulse sowie deren jeweiliger Einfluss auf die Magnetisierungsdynamik ist ein schwieriges Unterfangen. Umso mehr ist die Entwicklung und Anwendung von effizienten experimentellen Konzepten und umfangreichen Modellen grundlegend für das Antreiben des zukünftigen wissenschaftlichen und technologischen Fortschritt. In jedem Experiment dieser kummulativen Dissertation untersuche ich das Kristallgitter von Nanometer dünnen Filmen nach der Anregung mit Femtosekunden-Laserpulsen. Die relative Änderung der Gitterkonstante, hervorgerufen durch thermische Ausdehnung oder Pikosekunden-Schallpulse, wird dabei direkt mittels ultraschneller Röntgenbeugung (UXRD) gemessen. Der Aufbau nutzt zur Bereitstellung von ultrakurzen Röntgenpulsen eine lasergetriebene Plasma-Röntgenquelle (PXS). Phononen und Spins üben gleichermaßen einen Druck auf das Gitter aus, welches entsprechend der elastsischen Eigenschaften des Materials reagiert, was das Gitter zu einem vielseitigen Sensor für ultraschenlle Wechselwirkungen macht. Zum einen untersuche ich Materialien mit starken magnetoelastischen Eigentschaften: die stark magnetostriktive Seltenen-Erden-Verbindung TbFe2, elementares Dysprosium oder das technologisch relavante Invar-Material FePt. Zum anderen habe ich eine umfangreiche Studie der Gitterdynamik von Bi1Y2Fe5O12 (Bi:YIG) angestellt, in dem der Literatur zufolge hochfrequente kohärente Spindynamiken durch Femtosekunden-Laseranregung zu beobachten sind. Diese stehenden Spinwellen (SSWs) höherer Ordnung entstehen durch die kohärente und inkohärente Bewegung von Atomen, in anderen Worten Phononen, welche ich durch UXRD vermessen habe. Somit sind wir in der Lage, die experimentellen Beobachtungen der Gitter- und Spindynamik qualitativ und quantitativ zu vereinigen. Dies geschieht durch eine Kombination von Viel-Temperatur- und Anisotropiemodellierung sowie elastische, magnetoelastische, und mikromagnetsiche Modelle. Die gemeinsamen Daten von UXRD und der zeitaufgelösten magnetooptischen Kerr-Effekt Messungen (tr-MOKE), um jeweils die Gitter- und Spindynamik zu messen, wurden in der Vergangenheit noch an unterschiedlichen experimentellen Aufbauten gemessen. Um die Quantifizierung präziser zu gestalten, haben wir in unserer Arbeitsgruppe UXRD und tr-MOKE in einem einzigen Aufbau kombiniert, welcher somit meines Wissens der erste seiner Art ist. Ich half bei dem Entwurf und der Inbetriebnahme des neuen Aufbaus, welcher die gleichzeitige Messung von Gitter- und Spindynamik auf einer ultraschnellen Zeitskala unter identischen Anregungsbedingungen ermöglicht. Außerdem entwickelte ich eine neue Messroutine für Röntgenbeugung, welche die Messzeit von UXRD-Experimenten um bis zu einer Größenordnungen reduziert. Es nennt sich das Schneiden des reziproken Raumes (reciprocal space slicing, RSS) und nutzt den Vorteil von Flächendetektoren die Bewegung von Beugungsreflexen zu detektieren, was von einer Änderung der Gitterkonstante einhergeht, ohne zeitintensive Scans der Beugungswinkel mit dem Goniometer durchzuführen. RSS ist besonders nützlich für ultraschnelle Beugungsexperimente, weil die Messzeit an Großgeräten wie Synchrotrons oder Freie Elektronen Laser eine seltene und teure Ressource ist. Darüber hinaus ist RSS nicht zwangsläufig auf die Anwendung in ultraschnellen Experimenten beschränkt und kann sogar auf andere Beugungsexperimente, wie die mit Neutronen und Elektronen, ausgeweitet werden. KW - ultrafast KW - X-ray diffraction KW - thin films KW - magnetoelasticity KW - ultraschnell KW - Röntgenbeugung KW - dünne Filme KW - Magnetoelastizität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561098 ER - TY - THES A1 - Koç, Azize T1 - Ultrafast x-ray studies on the non-equilibrium of the magnetic and phononic system in heavy rare-earths T1 - Ultraschnelle Röntgenuntersuchungen des Nichtgleichgewichts der magnetischen und phononischen Systeme in schweren Seltenen Erden N2 - In this dissertation the lattice and the magnetic recovery dynamics of the two heavy rare-earth metals Dy and Gd after femtosecond photoexcitation are described. For the investigations, thin films of Dy and Gd were measured at low temperatures in the antiferromagnetic phase of Dy and close to room temperature in the ferromagnetic phase of Gd. Two different optical pump-x-ray probe techniques were employed: Ultrafast x-ray diffraction with hard x-rays (UXRD) yields the structural response of heavy rare-earth metals and resonant soft (elastic) x-ray diffraction (RSXD), which allows measuring directly changes in the helical antiferromagnetic order of Dy. The combination of both techniques enables to study the complex interaction between the magnetic and the phononic subsystems. N2 - In dieser Dissertation wird die Relaxationsdynamik des Gitters und der magnetischen Ordnung der zwei schweren, seltenen Erden Dy und Gd nach der Anregung mit femtosekunden Laserpulsen beschrieben. Für diese Untersuchungen wurden dünne Schichten von Dy und Gd bei niedrigen Temperaturen in der antiferromagnetischen Phase von Dy und nahe der Raumtemperatur in der ferromagnetischen Phase von Gd gemessen. Es wurden zwei verschiedene Experimente mittels optischem Anrege- Röntgen Abfrageverfahren durchgeführt, die ultraschnelle Röntgenbeugung mit harten Röntgenstrahlen (UXRD) und die resonante weiche (elastische) Röntgenbeugung (RSXD). Letzteres Verfahren erlaubt es, direkt die Änderungen der helikalen, antiferromagnetischen Ordnung zu messen. Die Kombination beider Techniken ermöglicht es, die komplexe Wechselwirkung zwischen dem magnetischen und dem phononischen Subsystem zu untersuchen. KW - magnetostriction KW - time-resolved x-ray diffraction KW - resonant soft x-ray diffraction KW - magnetism KW - critical exponent KW - heat transport KW - dysprosium KW - gadolinium KW - rare-earth metals KW - non-equilibrium KW - dynamics KW - magnetic and phononic system KW - Magnetostriktion KW - zeitaufgelöste Röntgenbeugung KW - resonante weiche Röntgenbeugung KW - Magnetismus KW - kritischer Exponent KW - Wärmetransport KW - Dysprosium KW - Gadolinium KW - Metalle der seltenen Erden KW - Nichtgleichgewicht KW - Dynamik KW - magnetisches und phononisches System Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423282 ER - TY - THES A1 - Goldshteyn, Jewgenij T1 - Frequency-resolved ultrafast dynamics of phonon polariton wavepackets in the ferroelectric crystals LiNbO₃ and LiTaO₃ N2 - During this work I built a four wave mixing setup for the time-resolved femtosecond spectroscopy of Raman-active lattice modes. This setup enables to study the selective excitation of phonon polaritons. These quasi-particles arise from the coupling of electro-magnetic waves and transverse optical lattice modes, the so-called phonons. The phonon polaritons were investigated in the optically non-linear, ferroelectric crystals LiNbO₃ and LiTaO₃. The direct observation of the frequency shift of the scattered narrow bandwidth probe pulses proofs the role of the Raman interaction during the probe and excitation process of phonon polaritons. I compare this experimental method with the measurement where ultra-short laser pulses are used. The frequency shift remains obscured by the relative broad bandwidth of these laser pulses. In an experiment with narrow bandwidth probe pulses, the Stokes and anti-Stokes intensities are spectrally separated. They are assigned to the corresponding counter-propagating wavepackets of phonon polaritons. Thus, the dynamics of these wavepackets was separately studied. Based on these findings, I develop the mathematical description of the so-called homodyne detection of light for the case of light scattering from counter propagating phonon polaritons. Further, I modified the broad bandwidth of the ultra-short pump pulses using bandpass filters to generate two pump pulses with non-overlapping spectra. This enables the frequency-selective excitation of polariton modes in the sample, which allows me to observe even very weak polariton modes in LiNbO₃ or LiTaO₃ that belong to the higher branches of the dispersion relation of phonon polaritons. The experimentally determined dispersion relation of the phonon polaritons could therefore be extended and compared to theoretical models. In addition, I determined the frequency-dependent damping of phonon polaritons. N2 - Während dieser Arbeit habe ich ein optisches Vier-Wellen-Misch-Experiment aufgebaut, um zeitaufgelöste Femtosekunden-Spektroskopie von Raman-aktiven Gittermoden durchzuführen. Dieser Aufbau erlaubt die Untersuchung selektiv angeregter Phonon Polaritonen. Diese Quasiteilchen entstehen durch die Kopplung von elektromagnetischen Wellen und transversal-optischer Gittermoden, den sogenannten Phononen. Die Phonon Polaritonen wurden in den optisch nichtlinearen, ferroelektrischen Kristallen LiNbO₃ und LiTaO₃ untersucht. Durch die direkte Beobachtung der Frequenzverschiebung der gestreuten, schmalbandigen Abfragepulse konnte die Raman-Wechselwirkung im Abfrage- und Erzeugungsprozess von Phonon Polaritonen nachgewießen werden. Diese experimentelle Methode vergleiche ich mit der Messung mittels ultrakurzen Laserpulsen. Hierbei ist die Frequenzverschiebung wegen der relativ großen Bandbreite der Laserpulse nicht auflösbar. Die Stokes und Anti-Stokes-Intensitäten sind hingegen in einem Experiment mit schmalbandigen Abfragepulsen spektral getrennt. Diese konnten den jeweiligen, entgegengesetzt propagierenden Wellenpaketen der Phonon Polaritonen zugeordnet werden. Deshalb war es moeglich, die Dynamik dieser Wellenpakete einzeln zu untersuchen. Basierend auf diesen Erkenntnissen konnte ich eine mathematische Beschreibung der sogenannten homodynen Detektion des Lichtes für den Fall von Lichtstreuung an entgegengesetzt propagierenden Phonon Polaritonen entwickeln. Desweiteren habe ich die breitbandigen, ultrakurzen Pumppulse mithilfe von zwei Bandpassfiltern so modifiziert, dass zwei spektral unterschiedliche und spektral nicht überlappende Anregepulse zur Verfügung standen. Dadurch wurde die frequenz-selektive Anregung von Polariton-Moden in der Probe ermöglicht. Diese Technik erlaubt mir die Untersuchung auch sehr schwacher Gittermoden in LiNbO₃ und LiTaO₃, die zu den höheren Ästen der Dispersionsrelation der Phonon Polaritonen gehören. Die experimentell bestimmte Dispersionsrelation der Phonon Polaritonen wurde erweitert und mit theoretischen Modellen verglichen. Zusätzlich habe ich die frequenzabhängige Dämpfung der Phonon Polaritonen bestimmt. T2 - Frequenzaufgelöste ultraschnelle Dynamik von Phonon Polariton Wellenpaketen in ferroelektrischen Kristallen LiNbO₃ und LiTaO₃ KW - transient grating KW - time resolved spectroskopy KW - non-linear optics KW - phonon polariton KW - impulsive stimulated Raman scattering KW - transientes Gitter KW - zeitaufgelöste Spektroskopie KW - nichtlineare Optik KW - Phonon-Polariton KW - impulsive stimulierte Raman Streuung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-71623 ER - TY - THES A1 - Herzog, Marc T1 - Structural dynamics of photoexcited nanolayered perovskites studied by ultrafast x-ray diffraction T1 - Untersuchung der Strukturdynamik photoangeregter Nanoschicht-Perowskite mittels ultraschneller Röntgenbeugung N2 - This publication-based thesis represents a contribution to the active research field of ultrafast structural dynamics in laser-excited nanostructures. The investigation of such dynamics is mandatory for the understanding of the various physical processes on microscopic scales in complex materials which have great potentials for advances in many technological applications. I theoretically and experimentally examine the coherent, incoherent and anharmonic lattice dynamics of epitaxial metal-insulator heterostructures on timescales ranging from femtoseconds up to nanoseconds. To infer information on the transient dynamics in the photoexcited crystal lattices experimental techniques using ultrashort optical and x-ray pulses are employed. The experimental setups include table-top sources as well as large-scale facilities such as synchrotron sources. At the core of my work lies the development of a linear-chain model to simulate and analyze the photoexcited atomic-scale dynamics. The calculated strain fields are then used to simulate the optical and x-ray response of the considered thin films and multilayers in order to relate the experimental signatures to particular structural processes. This way one obtains insight into the rich lattice dynamics exhibiting coherent transport of vibrational energy from local excitations via delocalized phonon modes of the samples. The complex deformations in tailored multilayers are identified to give rise to highly nonlinear x-ray diffraction responses due to transient interference effects. The understanding of such effects and the ability to precisely calculate those are exploited for the design of novel ultrafast x-ray optics. In particular, I present several Phonon Bragg Switch concepts to efficiently generate ultrashort x-ray pulses for time-resolved structural investigations. By extension of the numerical models to include incoherent phonon propagation and anharmonic lattice potentials I present a new view on the fundamental research topics of nanoscale thermal transport and anharmonic phonon-phonon interactions such as nonlinear sound propagation and phonon damping. The former issue is exemplified by the time-resolved heat conduction from thin SrRuO3 films into a SrTiO3 substrate which exhibits an unexpectedly slow heat conductivity. Furthermore, I discuss various experiments which can be well reproduced by the versatile numerical models and thus evidence strong lattice anharmonicities in the perovskite oxide SrTiO3. The thesis also presents several advances of experimental techniques such as time-resolved phonon spectroscopy with optical and x-ray photons as well as concepts for the implementation of x-ray diffraction setups at standard synchrotron beamlines with largely improved time-resolution for investigations of ultrafast structural processes. This work forms the basis for ongoing research topics in complex oxide materials including electronic correlations and phase transitions related to the elastic, magnetic and polarization degrees of freedom. N2 - Diese publikationsbasierte Dissertation ist ein Beitrag zu dem aktuellen Forschungsgebiet der ultraschnellen Strukturdynamik in laserangeregten Nanostrukturen. Die Erforschung solcher Vorgänge ist unabdingbar für ein Verständnis der vielseitigen physikalischen Prozesse auf mikroskopischen Längenskalen in komplexen Materialien, welche enorme Weiterentwicklungen für technologische Anwendungen versprechen. Meine theoretischen und experimentellen Untersuchungen betrachten kohärente, inkohärente und anharmonische Gitterdynamiken in epitaktischen Metal-Isolator-Heterostrukturen auf Zeitskalen von Femtosekunden bis Nanosekunden. Um Einsichten in solche transienten Prozesse in laserangeregten Kristallen zu erhalten, werden experimentelle Techniken herangezogen, die ultrakurze Pulse von sichtbarem Licht und Röntgenstrahlung verwenden. Ein zentraler Bestandteil meiner Arbeit ist die Entwicklung eines Linearkettenmodells zur Simulation und Analyse der laserinitiierten Atombewegungen. Die damit errechneten Verzerrungsfelder werden anschließend verwendet, um die Änderung der optischen und Röntgeneigenschaften der betrachteten Dünnfilm- und Vielschichtsysteme zu simulieren. Diese Rechnungen werden dann mit den experimentellen Daten verglichen, um die experimentellen Signaturen mit errechneten strukturellen Prozessen zu identifizieren. Dadurch erhält man Einsicht in die vielseitige Gitterdynamiken, was z.B. einen kohärenten Transport der Vibrationsenergie von lokal angeregten Bereichen durch delokalisierte Phononenmoden offenbart. Es wird gezeigt, dass die komplexen Deformationen in maßgeschneiderten Vielschichtsystemen hochgradig nichtlineare Röntgenbeugungseffekte auf Grund von transienten Interferenzerscheinungen verursachen. Das Verständnis dieser Prozesse und die Möglichkeit, diese präzise zu simulieren, werden dazu verwendet, neuartige ultraschnelle Röntgenoptiken zu entwerfen. Insbesondere erläutere ich mehrere Phonon-Bragg-Schalter-Konzepte für die effiziente Erzeugung ultrakurzer Röntgenpulse, die in zeitaufgelösten Strukturanalysen Anwendung finden. Auf Grund der Erweiterung der numerischen Modelle zur Beschreibung von inkohärenter Phononenausbreitung und anharmonischer Gitterpotentiale decken diese ebenfalls die aktuellen Themengebiete von Wärmetransport auf Nanoskalen und anharmonischer Phonon-Phonon-Wechselwirkung (z.B. nichtlineare Schallausbreitung und Phononendämpfung) ab. Die erstere Thematik wird am Beispiel der zeitaufgelösten Wärmeleitung von einem dünnen SrRuO3-Film in ein SrTiO3-Substrat behandelt, wobei ein unerwartet langsamer Wärmetransport zu Tage tritt. Außerdem diskutiere ich mehrere Experimente, die auf Grund der sehr guten Reproduzierbarkeit durch die numerischen Modelle starke Gitteranharmonizitäten in dem oxidischen Perowskit SrTiO3 bezeugen. Diese Dissertation erarbeitet zusätzlich verschiedene Weiterentwicklungen von experimentellen Methoden, wie z.B. die zeitaufgelöste Phononenspektroskopie mittels optischer Photonen und Röntgenphotonen, sowie Konzepte für die Umsetzung von Röntgenbeugungsexperimenten an Standard-Synchrotronquellen mit stark verbesserter Zeitauflösung für weitere Studien von ultraschnellen Strukturvorgängen. KW - ultraschnelle Röntgenbeugung KW - Phononen KW - epitaktisch KW - ultrafast x-ray diffraction KW - phonons KW - epitaxial Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62632 ER - TY - THES A1 - Kiel, Mareike T1 - Static and ultrafast optical properties of nanolayered composites : gold nanoparticles embedded in polyelectrolytes T1 - Statische und ultraschnelle optische Eigenschaften von nanogeschichteten Kompositmaterialien. Gold-Nanopartikel in Polyelektrolytschichten. N2 - In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratication of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images veried this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump-probe spectroscopy. This was achieved by simultaneous measurements of the changes in the reflectance and transmittance of the excited sample over a broad spectral range. The changes in the real and imaginary parts of the dielectric function were directly deduced from the measured data by using a recursive formalism based on the Fresnel equations. This method can be applied to a broad range of nanoparticle systems where experimental data on the transient dielectric response are rare. This complete experimental approach serves as a test ground for modeling the dielectric function of a nanoparticle compound structure upon laser excitation. N2 - Im Rahmen dieser Arbeit wurden Gold-Nanopartikel/Polyelektrolyt Multischichtstrukturen hergestellt, strukturell charakterisiert und bezüglich ihrer optischen Eigenschaften sowohl statisch als auch zeitaufgelöst analysiert. Die Strukturen wurden mithilfe der Dip-coating oder der Spin-coating Methode hergestellt. Beide Methoden ermöglichen das Einbetten einzelner Partikellagen in eine Polyelektrolytumgebung. Typische Strukturen in dieser Arbeit bestehen aus vier Wiederholeinheiten, wobei jede aus einer Nanopartikelschicht und zehn Polyelektrolyt-Doppellagen (kationisches und anionisches Polyelektrolyt) zusammengesetzt ist. Die Stratizierung der Gold-Nanopartikellagen wurde mittels Röntgenreflektometrie-Messungen im Kleinwinkelbereich nachgewiesen, welche Bragg Reflexionen bis zur siebten Ordnung aufzeigen. Das ausgeprägte Kiessig Interferenzmuster dieser Messungen weist zudem auf eine geringe globale Rauheit hin, die durch Oberflächenanalysen mit einem Rasterkraftmikroskop bestätigt werden konnte. Diese geringe Rauheit resultiert aus den glättenden Eigenschaften der Polyelektrolyte, die die Herstellung von Multilagensystemen mit mehreren Partikellagen erst ermöglichen. Die Aufnahme eines Transmissionselektronenmikroskops veranschaulicht eindrucksvoll die Anordnung der Partikel in einzelne Schichten. Durch photospektroskopische Messungen wurden die optischen Eigenschaften der Strukturen im UV- und sichtbaren Bereich untersucht. Beispielsweise wird eine Verschiebung und Verstärkung der Plasmonenresonanz beobachtet, wenn eine Goldnanopartikellage mit transparenten Polyelektrolyten beschichtet wird. Erst wenn die bedeckende Schicht dicker als die Reichweite der Plasmonen wird, bleibt die Absorption konstant. Die spektrale Reflektivität jedoch ändert sich auch mit jeder weiteren adsorbierten Polyelektrolytschicht. Die Reichweite der Plasmonenresonanz konnte auf diese Art für Partikel der Größe 10 nm, 20 nm und 150 nm bestimmt werden. Die Ergebnisse wurden im Kontext einer Effektiven Mediums Theorie diskutiert. Die komplexe dielektrische Funktion einer Multilagenstruktur wurde zeitabhängig nach Laserpulsanregung für einen breiten spektralen Bereich bestimmt. Dazu wurden zuerst die Änderungen der Reflektivität und Transmittivität simultan mittels der Pump-Probe (Anrege-Abtast) Spektroskopie gemessen. Anschließend wurden aus diesen Daten, mithilfe eines Formalismus, der auf den Fresnelschen Formeln basiert, die Änderungen im Real- und Imaginärteil der dielektrischen Funktion ermittelt. Diese Methode eignet sich zur Bestimmung der transienten dielektrischen Funktion einer Vielzahl von Nanopartikelsystemen. Der rein experimentelle Ansatz ermöglicht es, effektive Medien Theorien und Simulationen der dielektrischen Funktion nach Laserpulsanregung zu überprüfen. KW - Nanopartikel KW - Polyelektrolyte KW - Dielektrische Funktion KW - Anrege-Abtast Spektroskopie KW - nanoparticles KW - polyelectrolytes KW - dielectric function KW - pump-probe spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61823 ER - TY - THES A1 - Sander, Mathias T1 - Ultrafast tailored strain fields in nanostructures T1 - Ultraschnelle massgeschneiderte Dehnungsfelder in Nanostrukturen N2 - This publication based thesis, which consists of seven published articles, summarizes my contributions to the research field of laser excited ultrafast structural dynamics. The coherent and incoherent lattice dynamics on microscopic length scales are detected by ultrashort optical and X-ray pulses. The understanding of the complex physical processes is essential for future improvements of technological applications. For this purpose, tabletop soruces and large scale facilities, e.g. synchrotrons, are employed to study structural dynamics of longitudinal acoustic strain waves and heat transport. The investigated effects cover timescales from hundreds of femtoseconds up to several microseconds. The main part of this thesis is dedicated to the investigation of tailored phonon wave packets propagating in perovskite nanostructures. Tailoring is achieved either by laser excitation of nanostructured bilayer samples or by a temporal series of laser pulses. Due to the propagation of longitudinal acoustic phonons, the out-of-plane lattice spacing of a thin film insulator-metal bilayer sample is modulated on an ultrafast timescale. This leads to an ultrafast modulation of the X-ray diffraction efficiency which is employed as a phonon Bragg switch to shorten hard X-ray pulses emitted from a 3rd generation synchrotron. In addition, we have observed nonlinear mixing of high amplitude phonon wave packets which originates from an anharmonic interatomic potential. A chirped optical pulse sequence excites a narrow band phonon wave packet with specific momentum and energy. The second harmonic generation of these phonon wave packets is followed by ultrafast X-ray diffraction. Phonon upconversion takes place because the high amplitude phonon wave packet modulates the acoustic properties of the crystal which leads to self steepening and to the successive generation of higher harmonics of the phonon wave packet. Furthermore, we have demonstrated ultrafast strain in direction parallel to the sample surface. Two consecutive so-called transient grating excitations displaced in space and time are used to coherently control thermal gradients and surface acoustic modes. The amplitude of the coherent and incoherent surface excursion is disentangled by time resolved X-ray reflectivity measurements. We calibrate the absolute amplitude of thermal and acoustic surface excursion with measurements of longitudinal phonon propagation. In addition, we develop a diffraction model which allows for measuring the surface excursion on an absolute length scale with sub-Äangström precision. Finally, I demonstrate full coherent control of an excited surface deformation by amplifying and suppressing thermal and coherent excitations at the surface of a laser-excited Yttrium-manganite sample. N2 - Diese publikations basierte Dissertation enthält sieben veröffentlichte Artikel und ist ein Beitrag zum Forschungsfeld der laserangeregten ultraschnellen Strukturdynamik. Dabei wird die kohärente und inkohärente Gitterdynamik mit Hilfe von ultrakurzen optischen Pulsen sowie Röntgenpulsen auf mikroskopischer Längenskala untersucht. Das Verständnis dieser komplexen physikalischen Prozesse ist essenziell für die Verbesserung von zukünftigen technologischen Anwendungen. Hierfür wurde die Strukturdynamik von longitudinal akustischen Schallwellen und Wärmetransport mit Hilfe von verschieden Messinstrumenten, basierend auf Labor und Synchrotronstrahlungsquellen, untersucht. Die untersuchten Effekte umfassen Zeitskalen von einigen hundert Femtosekunden bis hin zu mehreren Mikrosekunden. Der Hauptteil meiner Dissertation beruht auf der Untersuchungen von definiert angeregten Phonon-Wellenpakten, die sich in Perowskit Nanostrukturen ausbreiten. Die Kontrolle wird entweder durch Laseranregung einer nanostruktieren Doppelschichtprobe oder durch eine zeitlich versetzte Laserpulsfolge erreicht. Dabei wird die Einheitszelle senkrecht zu den Gitterebenen auf ultraschnellen Zeiten modifiziert. Daraus folgt eine ultraschnelle Modulation der Röntgenbeugungs Effizienz, die als Phonon Braggschalter verwendet wird, um harte Röntgenpulse von Synchrotrons der dritten Generation zu verkürzen. Zudem haben wir die nichtlineare Mischung von Phonon-Wellenpaketen mit hoher Amplitude beobachtet, die der Anharmonizität des interatomaren Potential herrührt. Durch eine gechirpte optische Laserpulsfolge wird ein schmalbandiges Phonon-Wellenpaket mit definiertem Impuls und definierter Energie angeregt. Dabei wird die Erzeugung der zweiten Harmonischen mittels ultraschneller Röntgenbeugung untersucht. Die Phononkonversion findet hierbei durch die hohe Phononamplitude statt, die die akustischen Eigenschaften des Kristalls verändert. Dieser Prozess führt zum Aufsteilen der Wellenfront und folglich zur Erzeugung der höheren Harmonischen des Phonon-Wellenpakets. Außerdem habe ich ultraschnelle Schallpulse parallel zur Richtung der Probenoberfläche demonstriert. Dabei werden zwei sogenannte transiente Gitteranregungen verwendet, die räumlich und zeitlich zueinander versetzt sind, um thermische Gradienten und akustische Oberflächenmoden kohärent zu kontrollieren. Die Amplitude der kohärenten und inkohärenten Oberflächenausdehnung kann mit Hilfe von Röntgenreflektivität getrennt betrachtet werden. Zusätzlich haben wir ein Beugungsmodel entwickelt, mit dem wir die Oberflächenausdehnung auf einer absoluten Längenskale mit sub-Ängström Präzision kalibrieren. Schließlich zeige ich volle kohärente Kontrolle von der angeregten Oberflächenausdehnung durch Verstärkung und Unterdrückung von thermischen und kohärenten Anregungen auf der Oberfläche einer dünnen, laserangeregten Yttriummanganat Schicht. KW - Ultrafast X-ray diffraction KW - strain KW - acoustic waves KW - Ultraschnelle Röntgenbeugung KW - akustische Wellen KW - Dehnung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417863 ER - TY - THES A1 - Willig, Lisa T1 - Ultrafast magneto-optical studies of remagnetisation dynamics in transition metals T1 - Ultraschnelle Magneto-Optische Studien der Remagnetisierungsdynamik von Übergangsmetallen N2 - Ultrafast magnetisation dynamics have been investigated intensely for two decades. The recovery process after demagnetisation, however, was rarely studied experimentally and discussed in detail. The focus of this work lies on the investigation of the magnetisation on long timescales after laser excitation. It combines two ultrafast time resolved methods to study the relaxation of the magnetic and lattice system after excitation with a high fluence ultrashort laser pulse. The magnetic system is investigated by time resolved measurements of the magneto-optical Kerr effect. The experimental setup has been implemented in the scope of this work. The lattice dynamics were obtained with ultrafast X-ray diffraction. The combination of both techniques leads to a better understanding of the mechanisms involved in magnetisation recovery from a non-equilibrium condition. Three different groups of samples are investigated in this work: Thin Nickel layers capped with nonmagnetic materials, a continuous sample of the ordered L10 phase of Iron Platinum and a sample consisting of Iron Platinum nanoparticles embedded in a carbon matrix. The study of the remagnetisation reveals a general trend for all of the samples: The remagnetisation process can be described by two time dependences. A first exponential recovery that slows down with an increasing amount of energy absorbed in the system until an approximately linear time dependence is observed. This is followed by a second exponential recovery. In case of low fluence excitation, the first recovery is faster than the second. With increasing fluence the first recovery is slowed down and can be described as a linear function. If the pump-induced temperature increase in the sample is sufficiently high, a phase transition to a paramagnetic state is observed. In the remagnetisation process, the transition into the ferromagnetic state is characterised by a distinct transition between the linear and exponential recovery. From the combination of the transient lattice temperature Tp(t) obtained from ultrafast X-ray measurements and magnetisation M(t) gained from magneto-optical measurements we construct the transient magnetisation versus temperature relations M(Tp). If the lattice temperature remains below the Curie temperature the remagnetisation curve M(Tp) is linear and stays below the M(T) curve in equilibrium in the continuous transition metal layers. When the sample is heated above phase transition, the remagnetisation converges towards the static temperature dependence. For the granular Iron Platinum sample the M(Tp) curves for different fluences coincide, i.e. the remagnetisation follows a similar path irrespective of the initial laser-induced temperature jump. N2 - Ultraschnelle Magnetisierungsdynamiken wurden in den letzten zwei Jahrzehnten intensiv untersucht. Hingegen der Wiederherstellungsprozess der Magnetisierung nach einer ultraschnellen Demagnetisierung wird selten experimentell untersucht und im Detail diskutiert. Der Fokus dieser Arbeit liegt auf der Untersuchung der Magnetisierung auf langen Zeitskalen nach der Anregung durch einen Laserpuls. Dazu werden zwei ultraschnelle zeitaufgelöste Techniken verwendet, um die Relaxierung von dem magnetischen System und dem System des Gitters nach Anregung mit einem hochenergetischen ultrakurzen Laserpuls zu untersuchen. Das magnetische System wurde untersucht mithilfe von Messungen des zeitaufgelösten magneto-optischen Kerr Effekts. Der experimentelle Aufbau wurde im Rahmen dieser Arbeit entwickelt. Die Gitterdynamik wurde mittels ultraschneller Röntgendiffraktometrie aufgenommen. Die Kombination beider Techniken liefert ein besseres Verständnis von den Prozessen involviert in Magnetisierungsrelaxation aus einem Nicht-Gleichgewichtszustand. Drei unterschiedliche Probensysteme wurden im Rahmen dieser Arbeit untersucht: Dünne Nickel Schichten umgeben von nicht-magnetischen Schichten, eine kontinuierliche Schicht aus einer Eisen Platin Legierung und eine Probe bestehend aus Eisen Platin Nanopartikeln eingebettet in einer Kohlenstoffmatrix. Die Studie der Remagnetisierung zeigt einen generellen Trend für alle diese Systeme auf: Der Remagnetisierungsprozess kann mit zwei Zeitabhängikeiten beschrieben werden. Eine erste exponentielle Zeitabhängigkeit, die mit zunehmender Menge an absorbierter Energie verlangsamt wird bis ein lineares Verhalten beobachtet wird. Darauf folgend gibt es eine zweite exponentielle funktionale Abhängigkeit in der Zeit. Im Falle einer geringen Energieabsorption ist die erste Remagnetisierung schneller als die zweite. Mit steigender Fluenz wird die Remagnetisierung in der ersten Zeitabhängigkeit verlangsamt und kann als lineare Funktion beschrieben werden. Wenn der durch den Pump Puls induzierte Temperatursprung in der Probe ausreichend groß ist, wird ein Phasenübergang in die paramagnetische Phase beobachtet. In dem Remagnetisierungsprozess wird dieser Übergang durch einen deutlich sichtbaren Wechsel zwischen linearem und exponentiellen Verhalten sichtbar. Mithilfe der Kombination aus der von Rötngendaten gewonnener Gittertemperatur Tp(t) und der Magnetisierung M(t) erhalten wir die zeitliche Abhängigkeit der Magnetisierung von der Gittertemperatur M(Tp). Falls die Gittertemperatur unter der Curietemperatur bleibt, ist die Remagnetisierungskurve M(Tp) linear und bleibt unterhalb der statischen Gleichgewichtskurve M(T) für die kontinuierlichen Übergangsmetalle. Wenn die Probe über den Phasenübergang geheizt wird, nähert sich die Remagnetisierung der statischen Kurve an. Die transiente Remagnetisierungskurven M(Tp) der granularen Eisen Platin Probe folgen immer einem der statischen Magnetisierungskurve ähnlichen Verlauf, unabhängig von dem laser-induzierten Temperatursprung. KW - ultrafast dynamics KW - remagnetization KW - magnetization dynamics KW - transition metals KW - condensed matter KW - ultraschnelle Dynamik KW - magneto-optics KW - Magneto-Optik KW - Remagnetisierung KW - Magnetisierungsdynamik KW - Übergangsmetalle KW - kondensierte Materie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441942 ER - TY - THES A1 - Damle, Mitali T1 - Gas distribution around galaxies in cosmological simulations T1 - Gasverteilung um Galaxien in kosmologischen Simulationen N2 - The evolution of a galaxy is pivotally governed by its pattern of star formation over a given period of time. The star formation rate at any given time is strongly dependent on the amount of cold gas available in the galaxy. Accretion of pristine gas from the Intergalactic medium (IGM) is thought to be one of the primary sources for star-forming gas. This gas first passes through the virial regions of the galaxy before reaching the Interstellar medium (ISM), the hub of star formation. On the other hand, owing to the evolutionary course of young and massive stars, energetic winds are ejected from the ISM to the virial regions of the galaxy. A bunch of interlinked, complex astrophysical processes, arising from the concurrent presence of both infalling as well as outbound gas, play out over a range of timescales in the halo region or the Circumgalactic medium (CGM) of a galaxy. It would not be incorrect to say that the CGM has a stronghold over the gas reserves of a galaxy and thus, plays a backhand, yet, rather pivotal role in shaping many galactic properties, some of which are also readily observable. Observing the multi-phase CGM (via spectral-line ion measurements), however, remains a non-trivial effort even today. Low particle densities as well as the CGM’s vast spatial extent, coupled with likely deviations from a spherical distribution, marr the possibility of obtaining complete, unbiased, high-quality spectral information tracing the full extent of the gaseous halo. This often incomplete information leads to multiple inferences about the CGM properties that give rise to multiple contradicting models. In this regard, computer simulations offer a neat solution towards testing and, subsequently, falsifying many of these existing CGM models. Thanks to their controlled environments, simulations are able to not only effortlessly transcend several orders of magnitude in time and space, but also get around many of the observational limitations and provide some unique views on many CGM properties. In this thesis, I focus on effectively using different computer simulations to understand the role of CGM in various astrophysical contexts, namely, the effect of Local Group (LG) environment, major merger events and satellite galaxies. In Chapter 2, I discuss the approach used for modeling various phases of the simulated z = 0 LG CGM in Hestia constrained simulations. Each of the three realizations contain a Milky Way (MW)–Andromeda (M31) galaxy pair, along with their corresponding sets of satellite galaxies, all embedded within the larger cosmological context. For characterizing the different temperature–density phases within the CGM, I model five tracer ions with cloudy ionization modeling. The cold and cool–ionized CGM (H i and Si iii respectively) in Hestia is very clumpy and distributed close to the galactic centers, while the warm-hot and hot CGM (O vi, O vii and O viii) is tenuous and volume-filling. On comparing the H i and Si iii column densities for the simulated M31 with observational measurements from Project AMIGA survey and other low-z galaxies, I found that Hestia galaxies produced less gas in the outer CGM, unlike observations. My carefully designed observational bias model subsequently revealed the possibility that some MW gas clouds might be incorrectly associated with the M31 CGM in observations, and hence, may be partly responsible for giving rise to the detected mismatch between simulated data and observations. In Chapter 3, I present results from four zoom–in, major merger, gas–rich simulations and the subsequent role of the gas, originally situated in the CGM, in influencing some of the galactic observables. The progenitor parameters are selected such that the post–merger remnants are MW–mass galaxies. We generally see a very clear gas bridge joining the merging galaxies in case of multiple passage mergers while such a bridge is mostly absent when a direct collision occurs. On the basis of particle–to–galaxy distance computations and tracer particle analysis, I found that about 33–48 percent of the cold gas contributing to the merger–induced star formation in the bridge originated from the CGM regions. In Chapter 4, I used a sample of 234 MW-mass, L* galaxies from the TNG50 cosmological simulations, with an aim of characterizing the impact of their global satellite populations on the extended cold CGM properties of their host L* halos. On the basis of halo mass and number of satellite galaxies (N_sats ), I categorized the sample into low and high mass bins, and subsequently into bottom, inter and top quartiles respectively. After confirming that satellites indeed influence the extended cold halo gas density profiles of the host galaxies, I investigated the effects of different satellite population parameters on the host halo cold CGMs. My analysis showed that there is hardly any cold gas associated with the satellite population of the lowest mass halos. The stellar mass of the most massive satellite (M_*mms ) impacted the cold gas in low mass bin halos the most, while N_sats (followed by M_*mms ) was the most influential factor for the high mass halos. In any case, how easily cold gas was stripped off the most massive satellite did not play much role. The number of massive (Stellar mass, M* > 10^8 M_solar) satellites as well as the M_*mms associated with a galaxy are two of the most crucial parameters determining how much cold gas ultimately finds its way from the satellites to the host halo. Low mass galaxies are found rather lacking on both these fronts unlike their high mass counterparts. This work highlights some aspects of the complex gas physics that constitute the basic essence of a low-z CGM. My analysis proved the importance of a cosmological environment, local surroundings and merger history in defining some key observable properties of a galactic CGM. Furthermore, I found that different satellite properties were responsible for affecting the cold–dense CGM of the low and high-mass parent galaxies. Finally, the LG emerged as an exciting prospect for testing and pinning down several intricate details about the CGM. N2 - Die zeitliche Entwicklung der Sternenentstehung in einer Galaxie ist ein bestimmender Faktor für deren Entwicklung. Dabei ist die Sternenentstehungsrate stark abhängig von der in der Galaxie verfügbaren Menge an kaltem Gas. Die Akkretion von Gas aus dem intergalaktischen Medium (IGM) wird als eine der wichtigsten Quellen für das Gasreservoir angesehen, aus dem sich junge Sterne bilden. Bei diesem Prozess passiert das Gas zunächst die virialisierten äußeren Regionen der Milchstraße bevor es das Interstellare Medium (ISM) erreicht, der wichtigste Ort für die galaktische Sternentstehung. Im Gegensatz dazu tragen energiereiche Winde Gas zurück in die virialisierten Außenbereiche der Galaxie. Diese entstehen aufgrund der spezifischen Evolutionsprozesse von besonders jungen und massereichen Sternen in der galaktischen Scheibe. Durch das Zusammenspiel von einfallendem und das die Galaxie verlassendem Gas entsteht eine Vielzahl von astrophysikalischen Prozessen welche auf unterschiedlichsten Zeitskalen sowie in der Haloregion der Galaxie und dem zirkumgalaktischen Medium (CGM) von besonderer Wichtigkeit sind. Es kann behauptet werden, dass das CGM maßgeblich über die Gasreserven der Galaxie entscheidet und daher eine elementare Rolle in der Bestimmung vieler galaktischer Eigenschaften spielt von denen mache direkt beobachtbar sind. Die Beobachtung des CGM in seinen vielen unterschiedlichen Gasphasen (durch die Spektrallinienanalyse mehrerer Ionenspezies) gestaltet sich auch heute noch als kompliziert. Die geringen Teilchendichten und die schiere Größe im Zusammenspiel mit Abweichungen von sphärischer Geometrie erschweren es, vollständige, repräsentative und hochqualitative spektrale Datensätze zu erhalten welche das volle Ausmaß das galaktischen Halos in Betracht ziehen. Diese unvollständige Informationslage führt oft zu unterschiedlichen Interpretationen der Eigenschaften des CGM welche sich in verschiedenen, sich mitunter widersprechenden Modellen, widerspiegeln. In diesem Zusammenhang bieten Computersimulationen eine elegante Lösung, um viele der CGM Modelle zu testen und schließlich zu verifizieren oder falsifizieren. Die kontrollierte Umgebung erlaubt es, das CGM mühelos auf unterschiedlichsten Größenordnungen in Raum und Zeit zu untersuchen aber auch observationstechnische Limitationen zu umgehen, um ein einzigartiges Bild der Eingenschaften des CGM zu erhalten. In dieser Arbeit fokussiere ich mich auf die effektive Nutzung von verschiedenen Computersimulationen, um die Rolle des CGM im verschiedenen astrophysikalischen Kontexten zu verstehen. Im Kapitel 2 diskutiere ich den Ansatz, welcher für das Modellieren derunterschiedlichen Gasphasen des CGM in der Lokalen Gruppe (LG) bei z = 0 in den ”constrained” Simulationen des Hestia Projekts angewandt worden iii ist. Jede der drei Realisierungen enthält ein Milchstraßen-M31 Paar zusammen ihren Satellitengalaxien. Alle zusammen sind dabei eingebettet in den größeren kosmologischen Kontext. Für die Charakterisierung der unterschiedlichen Temperatur-Dichte Phasen im CGM habe ich eine Gruppe von fünf Ionen gewählt welche das Vorhandensein der Phasen anzeigen. Für jede der Zellen in der Simulation habe ich das cloudy post-processing Toolkit angewandt und die entsprechenden Anteile der Ionen im Gas bestimmt. Das kalte und kühle CGM (entsprechend charakterisiert durch H i beziehungsweise Si iii) zeigt sich sehr klumpig und ist nahe an den galaktischen Zentren verteilt während das warm-heiße CGM (charakterisiert durch O vi, O vii, O viii) dünn verteilt und volumenfüllend ist. Durch den Vergleich der Säulendichten für H i und Si iii aus den Simulationen zusammen mit Beobachtungsdaten der AMIGA Durchmusterung und Studien über andere Galaxien mit geringer Rotverschiebung habe ich herausgefunden, dass hestia weniger Gas in den Außenbereichen des CGM produziert als es die Beobachtungsdaten suggerieren. Mein sorgfältig entworfenes Modell für den Beobachtungsbias hat die Möglichkeit aufgezeigt, dass in Beobachtungen mache der Milchstraße zugehörigen Gaswolken als M31-zugehörig missinterpretiert werden könnten. Im Kapitel 3 präsentiere ich Ergebnisse von vier zoom-in, major merger und gasreichen Simulationen unter dem Gesichtspunkt der Rolle des Gases, welches ursprünglich dem CGM zugehörig ist und dessen Einfluss auf einige galaktische Observablen. Die initialen Parameter sind so ausgewählt, dass die den Verschmelzungen entspringenden Galaxien eine vergleichbare Masse wie die der Milchstraße besitzen. Im Allgemeinen sehen wir eine klare Brücke von Gas im Falle von Verschmelzungen welche mehrere separate Annäherungen durchlebten. Im Vergleich dazu fehlt diese Brücke in den Fällen einer direkten Kollision. Auf der Grundlage von particle-to-galaxy Distanz Berechnungen und tracer particle Analysen habe ich herausgefunden, dass rund 33–48 Prozent des kalten Gases aus dem CGM zur Sternenentstehung, welche in Folge der Kollision erfolgt, beiträgt. In Kapitel 4 habe ich eine Stichprobe aus 234 L* Galaxien, jeweils mit der Masse der Milchstraße, aus der Kosmologischen Simulation TNG50 genutzt, um den Einfluss der globalen Begleitgalaxienpopulation auf die Eigenschaften des ausgedehnten und kalten CGM der Zentralhalos zu bestimmen. Auf der Basis der Halomasse habe ich die Galaxienhalos in Bins niedriger und hohern Masse eingeteilt. Dabei ist jeder dieser Bins wiederum unterteilt in das untere, mittlere und obere Quartil in Abhängigkeit der Anzahl der Begleitgalaxien (N_sats) im jeweiligen Halo. Nach der Bestätigung dass Begleitgalaxien in der Tat die Gasdichteprofile ihrer Zentralgalaxie beeinflussen, habe ich die Effekte von verschiedenen Populationsparametern der Begleitgalaxien auf die CGM der jeweiligen Zentralgalaxien untersucht. Meine Analyse zeigt, dass nahezu kein kaltes Gas mit der Population der Satellitengalaxien in den Halos mit der geringsten Masse assoziiert ist. Das Gas der Halos im masseärmeren Bin ist primär beeinflusst durch die stellare Masse der massereichsten Satelliten-galaxie (M_*mms), wohingegen N_sats (gefolgt von M _*mms) die Masse des kalten Gases der massereichsten Zentralhalos am signifikantesten beeinflusst hat. Unabhängig davon schien es nicht von Relevanz zu sein wie einfach das Gas von der massereichsten Satellitengalaxie abgetragen werden kann. Die Anzahl der der massereichen (M* > 10^8 M_solar) Satellitengalaxien, sowie die mit einer Galaxie assoziierten M_*mms zeigten sich als zwei der Wichtigsten Parameter um zu verstehen wie das kalte Gas von den Satellitengalaxien in den Halo transferiert wird. Im Falle von masseärmeren Galaxien scheinen sich diese in beiden Aspekten von ihren massereichen Gegenstücken zu unterscheiden und zeigen keine besondere Abhängingkeit. Diese Arbeit behandelt einige Aspekte der komplexem physikalischen Aspekte von astrophysikalischen Gasen welche die Basis für die Untersuchung des CGM bei geringen Rotverschiebungen bildet. Meine Analyse zeigt die Wichtigkeit des Kosmologischen Umfelds, die lokale Umgebung, sowie die Verschmelzungshistorie indem sie fundamentale Observablen des galaktischen CGM beeinflussen. Des weiteren habe ich herausgefunden, dass verschiedene Satelliteneigenschaften für die Beeinflussung des kalt–dichten CGM der masseärmeren und massereichen Muttergalaxien verantwortlich waren. Schließlich stellte sich heraus, dass die LG eine vielversprechendes Beispiel zum Testen und Festhalten mehrerer komplizierter Details über das CGM darstellt. KW - circumgalactic medium KW - cosmological simulations KW - local group KW - major mergers KW - satellite galaxies KW - zirkumgalaktischen Medium KW - kosmologische Computersimulationen KW - lokalen Gruppe KW - Major mergers KW - Begleitgalaxien Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-590543 ER - TY - THES A1 - Aseev, Nikita T1 - Modeling and understanding dynamics of charged particles in the Earth's inner magnetosphere T1 - Modellierung und Untersuchung der Dynamik geladener Teilchen in der inneren Magnetosphäre der Erde N2 - The Earth's inner magnetosphere is a very dynamic system, mostly driven by the external solar wind forcing exerted upon the magnetic field of our planet. Disturbances in the solar wind, such as coronal mass ejections and co-rotating interaction regions, cause geomagnetic storms, which lead to prominent changes in charged particle populations of the inner magnetosphere - the plasmasphere, ring current, and radiation belts. Satellites operating in the regions of elevated energetic and relativistic electron fluxes can be damaged by deep dielectric or surface charging during severe space weather events. Predicting the dynamics of the charged particles and mitigating their effects on the infrastructure is of particular importance, due to our increasing reliance on space technologies. The dynamics of particles in the plasmasphere, ring current, and radiation belts are strongly coupled by means of collisions and collisionless interactions with electromagnetic fields induced by the motion of charged particles. Multidimensional numerical models simplify the treatment of transport, acceleration, and loss processes of these particles, and allow us to predict how the near-Earth space environment responds to solar storms. The models inevitably rely on a number of simplifications and assumptions that affect model accuracy and complicate the interpretation of the results. In this dissertation, we quantify the processes that control electron dynamics in the inner magnetosphere, paying particular attention to the uncertainties of the employed numerical codes and tools. We use a set of convenient analytical solutions for advection and diffusion equations to test the accuracy and stability of the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. We show that numerical schemes implemented in the code converge to the analytical solutions and that the VERB-4D code demonstrates stable behavior independent of the assumed time step. The order of the numerical scheme for the convection equation is demonstrated to affect results of ring current and radiation belt simulations, and it is crucially important to use high-order numerical schemes to decrease numerical errors in the model. Using the thoroughly tested VERB-4D code, we model the dynamics of the ring current electrons during the 17 March 2013 storm. The discrepancies between the model and observations above 4.5 Earth's radii can be explained by uncertainties in the outer boundary conditions. Simulation results indicate that the electrons were transported from the geostationary orbit towards the Earth by the global-scale electric and magnetic fields. We investigate how simulation results depend on the input models and parameters. The model is shown to be particularly sensitive to the global electric field and electron lifetimes below 4.5 Earth's radii. The effects of radial diffusion and subauroral polarization streams are also quantified. We developed a data-assimilative code that blends together a convection model of energetic electron transport and loss and Van Allen Probes satellite data by means of the Kalman filter. We show that the Kalman filter can correct model uncertainties in the convection electric field, electron lifetimes, and boundary conditions. It is also demonstrated how the innovation vector - the difference between observations and model prediction - can be used to identify physical processes missing in the model of energetic electron dynamics. We computed radial profiles of phase space density of ultrarelativistic electrons, using Van Allen Probes measurements. We analyze the shape of the profiles during geomagnetically quiet and disturbed times and show that the formation of new local minimums in the radial profiles coincides with the ground observations of electromagnetic ion-cyclotron (EMIC) waves. This correlation indicates that EMIC waves are responsible for the loss of ultrarelativistic electrons from the heart of the outer radiation belt into the Earth's atmosphere. N2 - Die innere Magnetosphäre der Erde ist ein sehr dynamisches System, das hauptsächlich vom äußeren Sonnenwind beeinflusst wird, der auf das Magnetfeld unseres Planeten einwirkt. Störungen im Sonnenwind, wie z.B. koronale Massenauswürfe und sogenannte Korotierende Wechselwirkungsbereiche, verursachen geomagnetische Stürme, die zu deutlichen Veränderungen der Populationen geladener Teilchen in der inneren Magnetosphäre führen - Plasmasphäre, Ringstrom und Strahlungsgürtel. Satelliten, die in Regionen mit erhöhten energetischen und relativistischen Elektronenflüssen betrieben werden, können durch tiefe dielektrische Ladung oder Oberflächenladungen bei schweren Weltraumwetterereignissen beschädigt werden. Die Vorhersage der Dynamik der geladenen Teilchen und die Abschwächung ihrer Auswirkungen auf die Infrastruktur sind heutzutage von besonderer Bedeutung, insbesondere aufgrund unserer zunehmenden Abhängigkeit von Weltraumtechnologien. Die Dynamik von Teilchen in der Plasmasphäre, des Ringstrom und in den Strahlungsgürteln sind durch Kollisionen und kollisionsfreie Wechselwirkungen mit elektromagnetischen Feldern, die durch die Bewegung geladener Teilchen induziert werden, stark gekoppelt. Mehrdimensionale numerische Modelle vereinfachen die Betrachtung von Transport-, Beschleunigungs- und Verlustprozessen dieser Partikel und ermöglichen es uns, vorherzusagen, wie die erdnahe Weltraumumgebung auf Sonnenstürme reagiert. Die Modelle beruhen zwangsläufig auf einer Reihe von Vereinfachungen und Voraussetzungen, die sich auf die Modellgenauigkeit auswirken und die Interpretation der Ergebnisse erschweren. In dieser Dissertation quantifizieren wir die Prozesse, die die Dynamik der Elektronen in der inneren Magnetosphäre steuern. Dabei richten wir den Fokus insbesondere auch auf die Unsicherheiten der verwendeten numerischen Codes. Wir verwenden eine Reihe praktischer analytischer Lösungen für Advektions- und Diffusionsgleichungen, um die Genauigkeit und Stabilität des 4-dimensionalen ''Versatile Electron Radiation Belt'' Codes (VERB-4D Code) zu testen. Wir zeigen, dass die im Code implementierten numerischen Schemata zu den analytischen Lösungen konvergieren und der Code sich unabhängig vom angenommenen Zeitschritt stabil verhält. Wir demonstrieren, wie die Genauigkeit des numerischen Schemas für die Konvektionsgleichung die Ergebnisse von Ringstrom- und Strahlungsgürtelsimulationen beeinflussen kann, und dass es von entscheidender Beteutung ist, numerische Schemata höherer Ordnung zu verwenden, um numerische Fehler im Modell zu reduzieren. Mit dem ausführlich getesteten VERB-4D Code modellieren wir die Dynamik der Ringstromelektronen während des Sturms vom 17. März 2013. Wir zeigen, dass die Diskrepanzen zwischen dem Modell und Beobachtungen oberhalb von 4.5 Erdradien durch Unsicherheiten in den äußeren Randbedingungen erklärt werden können und dass die Elektronen durch die globalen elektrischen und magnetischen Felder von der geostationäre Umlaufbahn zur Erde transportiert wurden. Wir untersuchen weiterhin, wie die Simulationsergebnisse von den Eingabemodellen und Parametern abhängen. Wir zeigen, dass das Modell besonders empfindlich für das globale elektrische Feld und die Lebensdauer der Elektronen unterhalb von 4.5 Erdradien ist. Außerdem quantifizieren wir auch die Auswirkungen von radialer Diffusion und subauroralen Polarisationsströmen. Wir haben einen datenassimilativen Code entwickelt, der mithilfe des Kalman-Filters ein Konvektionsmodell für den Transport und den Verlust energetischer Elektronen mit den Satellitendaten der Van Allen Probes kombiniert. Wir zeigen, dass die Verwendung eines Kalman-Filters Modellunsicherheiten im elektrischen Konvektionsfeld, in der Lebensdauer der Elektronen und in den Randbedingungen korrigieren kann. Weiterhin zeigen wir, wie der Innovationsvektor - die Differenz zwischen Beobachtungen und Modellvorhersagen - verwendet werden kann, um physikalische Prozesse zu identifizieren, die im Modell der Dynamik der energetischen Elektronen fehlen. Außerdem berechnen wir radiale Profile der Phasenraumdichte ultrarelativistischer Elektronen mithilfe von Van Allen Probes-Messungen. Wir analysieren die Form der Profile und zeigen, dass die Entstehung neuer lokaler Minima in den radialen Profilen mit den Bodenbeobachtungen von EMIC-Wellen übereinstimmt. Diese Korrelation legt nahe, dass EMIC-Wellen für den Verlust ultrarelativistischer Elektronen vom Herzen des äußeren Strahlungsgürtels in die Erdatmosphäre verantwortlich sind. KW - ring current electrons KW - radiation belts KW - mathematical modeling KW - wave-particle interactions KW - data assimilation KW - Ringstromelektronen KW - Strahlungsgürtel KW - mathematische Modellierung KW - Wellen-Teilchen Wechselwirkungen KW - Datenassimilation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-479211 ER - TY - THES A1 - Matuschek, Hannes T1 - Applications of reproducing Kernel Hilbert spaces and their approximations Y1 - 2015 ER - TY - THES A1 - Rodriguez Zuluaga, Juan T1 - Electric and magnetic characteristics of equatorial plasma depletions T1 - Elektrische und magnetische Beschreibung von äquatorialen Plasma-Verarmungen BT - an observational assessment using the Swarm mission BT - eine empirische Beurteilung mit der Satellitenmission Swarm N2 - Near-Earth space represents a significant scientific and technological challenge. Particularly at magnetic low-latitudes, the horizontal magnetic field geometry at the dip equator and its closed field-lines support the existence of a distinct electric current system, abrupt electric field variations and the development of plasma irregularities. Of particular interest are small-scale irregularities associated with equatorial plasma depletions (EPDs). They are responsible for the disruption of trans-ionospheric radio waves used for navigation, communication, and Earth observation. The fast increase of satellite missions makes it imperative to study the near-Earth space, especially the phenomena known to harm space technology or disrupt their signals. EPDs correspond to the large-scale structure (i.e., tens to hundreds of kilometers) of topside F region irregularities commonly known as Spread F. They are observed as depleted-plasma density channels aligned with the ambient magnetic field in the post-sunset low-latitude ionosphere. Although the climatological variability of their occurrence in terms of season, longitude, local time and solar flux is well-known, their day to day variability is not. The sparse observations from ground-based instruments like radars and the few simultaneous measurements of ionospheric parameters by space-based instruments have left gaps in the knowledge of EPDs essential to comprehend their variability. In this dissertation, I profited from the unique observations of the ESA’s Swarm constellation mission launched in November 2013 to tackle three issues that revealed novel and significant results on the current knowledge of EPDs. I used Swarm’s measurements of the electron density, magnetic, and electric fields to answer, (1.) what is the direction of propagation of the electromagnetic energy associated with EPDs?, (2.) what are the spatial and temporal characteristics of the electric currents (field-aligned and diamagnetic currents) related to EPDs, i.e., seasonal/geographical, and local time dependencies?, and (3.) under what conditions does the balance between magnetic and plasma pressure across EPDs occur? The results indicate that: (1.) The electromagnetic energy associated with EPDs presents a preference for interhemispheric flows; that is, the related Poynting flux directs from one magnetic hemisphere to the other and varies with longitude and season. (2.) The field-aligned currents at the edges of EPDs are interhemispheric. They generally close in the hemisphere with the highest Pedersen conductance. Such hemispherical preference presents a seasonal/longitudinal dependence. The diamagnetic currents increase or decrease the magnetic pressure inside EPDs. These two effects rely on variations of the plasma temperature inside the EPDs that depend on longitude and local time. (3.) EPDs present lower or higher plasma pressure than the ambient. For low-pressure EPDs the plasma pressure gradients are mostly dominated by variations of the plasma density so that variations of the temperature are negligible. High-pressure EPDs suggest significant temperature variations with magnitudes of approximately twice the ambient. Since their occurrence is more frequent in the vicinity of the South Atlantic magnetic anomaly, such high temperatures are suggested to be due to particle precipitation. In a broader context, this dissertation shows how dedicated satellite missions with high-resolution capabilities improve the specification of the low-latitude ionospheric electrodynamics and expand knowledge on EPDs which is valuable for current and future communication, navigation, and Earth-observing missions. The contributions of this investigation represent several ’firsts’ in the study of EPDs: (1.) The first observational evidence of interhemispheric electromagnetic energy flux and field-aligned currents. (2.) The first spatial and temporal characterization of EPDs based on their associated field-aligned and diamagnetic currents. (3.) The first evidence of high plasma pressure in regions of depleted plasma density in the ionosphere. These findings provide new insights that promise to advance our current knowledge of not only EPDs but the low-latitude post-sunset ionosphere environment. N2 - Der erdnahe Weltraum stellt eine bedeutende wissenschaftliche und technologische Herausforderung dar. Insbesondere in niedrigeren magnetischen Breitengraden unterstützen die horizontale Geometrie des Magnetfelds und seine geschlossenen Feldlinien das Vorhandensein eines speziellen elektrischen Stromsystems, abrupte Änderungen der elektrischen Felder und das Auftreten von Plasmairregularitäten. Von besonderem Interesse sind regionale Unregelmäßigkeiten im Zusammenhang mit äquatorialen Plasma-Verarmungen (EPDs, Abkürzung aus dem Englischen für „equatorial plasma depletions”). Sie stören trans-ionosphärischer Funkwellen, welche zur Positionierung, Kommunikation und Erd-beobachtung eingesetzt werden. Die schnelle Entwicklung von Satellitenmissionen macht das Verständnis der erdnahen Weltraumphänomene zu einer Priorität, insbesondere derjenigen, welche die Weltraumtechnologie schädigen oder ihre Signale stören können. Die EPDs und die damit verbundenen Plasmairregularitäten sind seit Beginn des Weltraumzeitalters eines der am häufigsten untersuchten Phänomene. EPDs sind großflächigen Strukturen (d. h. zehn bis hundert Kilometer), die auf Spread F Ereignisse zurückgeführt werden können. Sie äußern sich als mit dem Hintergrund-Magnetfeld ausgerichtete Kanäle verarmter Plasmadichte, welche in niedrigen Breiten in der Ionophäre nach Sonnenuntergang auftreten. Obwohl die klimatologische Variabilität des Auftretens von EPDs bezüglich der Jahreszeit, geografischen Länge, Ortszeit und des Sonnenzyklus wohl bekannt sind, trifft dies nicht für ihre Tag-zu-Tag-Variabilität zu. Die spärlichen Beobachtungen von bodengestützten Instrumenten, wie Radargeräten, und die wenigen gleichzeitigen Messungen ionosphärischer Parameter von weltraumgestützten Instrumenten auf erdnahen Umlaufbahnen haben Wissenslücken hinterlassen, die für das Verständnis der Variabilität von EPDs essentiell sind. In dieser Dissertation habe ich von einzigartigen Beobachtungen der im November 2013 gestarteten ESA Satellitenkonstellationsmission „Swarm“ profitiert, um drei Probleme zu bearbeiten, die neue und signifikante Ergebnisse zum aktuellen Wissen über EPDs enthüllten. Ich habe Swarms Messungen der Elektronendichte, des magnetischen und des elektrischen Feldes verwendet, um Folgendes zu beantworten: (1.) In welche Richtung breitet sich die mit den EPDs verbundene elektromagnetische Energie aus? (2.) Was sind die räumlichen und zeitlichen Eigenschaften der elektrischen Ströme (feldgerichtete und diamagnetische Ströme) in Bezug auf EPDs, d. h. wie hängen sie von der geografischen Länge, Jahreszeit und Lokalzeit ab? (3.) Unter welchen Bedingungen findet der mit EPDs verbundene Ausgleich zwischen magnetischem Druck und Plasmadruck statt? Die Ergebnisse zeigen, dass: (1.) Die mit EPDs verbundene elektromagnetische Energie bevorzugt interhemisphärische Strömungen, das heißt, der zugehörige Poynting-Fluss strömt von einer magnetischen Hemisphäre zur anderen und die Strömungsrichtung variiert mit geografischer Länge und Jahreszeit. (2.) Die feldgerichteten Ströme an den Rändern von EPDs sind interhemisphärisch. Im Allgemeinen schließen sie sich in der Hemisphäre mit der höchsten Pedersen-Leitfähigkeit. Die derartige hemisphärische Präferenz zeigt eine Abhängigkeit bezüglich der Jahreszeit/geografischen Länge. Die diamagnetischen Ströme erhöhen oder verringern den magnetischen Druck innerhalb der EPDs. Diese beiden Effekte beruhen auf Variationen der Plasmatemperatur innerhalb der EPDs, die von der geografischen Länge und der Lokalzeit abhängt. (3.) EPDs weisen einen höheren oder niedrigeren Plasmadruck als ihre Umgebung auf. In Niederdruck-EPDs werden die Plasmadruckgradienten meist durch Variationen der Plasmadichte hervorgerufen, sodass Temperaturschwankungen vernachlässigbar sind. Hochdruck-EPDs deuten auf hohe innere Temperaturen hin, etwa das Zweifache der Umgebungstemperatur. Aufgrund ihres häufigeren Auftretens in der Nähe der Südatlantischen Magnetfeldanomalie wird vermutet, dass solche hohen Temperaturen auf den Einfall hochenergetischer Teilchen zurückzuführen sind. In einem breiteren Kontext zeigt diese Dissertation auf, wie spezielle Satellitenmissionen mit hohem Auflösungsvermögen die Spezifikation der ionoshärischen Elektrodynamik in niedrigen Breiten und das Verständnis von EPDs verbessern, was wertvoll für aktuelle und zukünfte Kommunikatoins-, Positionierungs- sowie Erdbeobachtungsmissionen ist. Die Beiträge dieser Arbeit stellen gleich mehrere "Premieren" in der EPD-Forschung dar: (1.) Der erste empirische Nachweis interhemisphärischer elektromagnetischer Energieflüsse und feldgerichteter Ströme. (2.) Die erste raum-zeitliche Beschreibung von EPDs auf der Grundlage ihrer assoziierten feldgerichteten und diamagnetischen Ströme. (3.) Der erste Nachweis hohen Plasmadrucks in Regionen verminderter Plasmadichte in der Ionosphäre. Diese Forschungsergebnisse liefern neue Erkenntnisse, die nicht nur unser derzeitiges Wissen über EPDs, sondern auch jenes über die ionosphärische Domaine in niedrigen Breiten nach Sonnenuntergang fördert. KW - equatorial plasma depletions KW - electric and magnetic fields KW - spread F KW - ionosphere KW - swarm mission KW - äquatorialen Plasma-Verarmungen KW - elektrische und magnetische Felder KW - Spread F KW - Ionosphäre KW - Satellitenmission Swarm Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445873 ER - TY - THES A1 - Bojahr, Andre T1 - Hypersound interaction studied by time-resolved inelastic light and x-ray scattering T1 - Wechselwirkende Hyperschallwellen untersucht mittels zeitaufgelöster inelastischer Licht- und Röntgenstreuung N2 - This publications-based thesis summarizes my contribution to the scientific field of ultrafast structural dynamics. It consists of 16 publications, about the generation, detection and coupling of coherent gigahertz longitudinal acoustic phonons, also called hypersonic waves. To generate such high frequency phonons, femtosecond near infrared laser pulses were used to heat nanostructures composed of perovskite oxides on an ultrashort timescale. As a consequence the heated regions of such a nanostructure expand and a high frequency acoustic phonon pulse is generated. To detect such coherent acoustic sound pulses I use ultrafast variants of optical Brillouin and x-ray scattering. Here an incident optical or x-ray photon is scattered by the excited sound wave in the sample. The scattered light intensity measures the occupation of the phonon modes. The central part of this work is the investigation of coherent high amplitude phonon wave packets which can behave nonlinearly, quite similar to shallow water waves which show a steepening of wave fronts or solitons well known as tsunamis. Due to the high amplitude of the acoustic wave packets in the solid, the acoustic properties can change significantly in the vicinity of the sound pulse. This may lead to a shape change of the pulse. I have observed by time-resolved Brillouin scattering, that a single cycle hypersound pulse shows a wavefront steepening. I excited hypersound pulses with strain amplitudes until 1% which I have calibrated by ultrafast x-ray diffraction (UXRD). On the basis of this first experiment we developed the idea of the nonlinear mixing of narrowband phonon wave packets which we call "nonlinear phononics" in analogy with the nonlinear optics, which summarizes a kaleidoscope of surprising optical phenomena showing up at very high electric fields. Such phenomena are for instance Second Harmonic Generation, four-wave-mixing or solitons. But in case of excited coherent phonons the wave packets have usually very broad spectra which make it nearly impossible to look at elementary scattering processes between phonons with certain momentum and energy. For that purpose I tested different techniques to excite narrowband phonon wave packets which mainly consist of phonons with a certain momentum and frequency. To this end epitaxially grown metal films on a dielectric substrate were excited with a train of laser pulses. These excitation pulses drive the metal film to oscillate with the frequency given by their inverse temporal displacement and send a hypersonic wave of this frequency into the substrate. The monochromaticity of these wave packets was proven by ultrafast optical Brillouin and x-ray scattering. Using the excitation of such narrowband phonon wave packets I was able to observe the Second Harmonic Generation (SHG) of coherent phonons as a first example of nonlinear wave mixing of nanometric phonon wave packets. N2 - Diese publikationsbasierte Dissertation fasst meinen Beitrag zum Forschungsgebiet der ultraschnellen Strukturdynamik zusammen. Diese Arbeit besteht aus 16 Publikationen aus den Bereichen der Erzeugung, Detektion und Kopplung von kohärenten Gigahertz longitudinal-akustischen Phononen, auch Hyperschallwellen genannt. Um solch hochfrequente Phononen zu erzeugen, werden Femtosekunden nahinfrarot Laserpulse benutzt, um Nanostrukturen auf einer ultraschnellen Zeitskala zu erhitzen. Die aufgeheizten Regionen der Nanostruktur dehnen sich aufgrund der hohen Temperatur aus und ein hochfrequenter Schallpuls wird generiert. Um solche akustischen Pulse zu detektieren benutze ich ultraschnelle Varianten der Brillouin- und Röntgenstreuung. Dabei wird ein einfallendes optisches oder Röntgenphoton an der erzeugten Schallwelle gestreut. Die gemessene Streuintensität ist hierbei ein Maß für die Besetzung einzelner Phononenzustände. Der zentrale Teil dieser Arbeit ist die Untersuchung von kohärenten Phonon-Wellenpaketen mit sehr hoher Amplitude. Diese Wellenpakete können sich nichtlinear verhalten, sehr ähnlich zu Flachwasserwellen bei denen nichtlineare Effekte in Form eines Aufsteilens der Wellenfronten oder der Existenz von Solitonen, bekannt als Tsunamis, äußern. Durch die hohe Amplitude der akustischen Wellenpakete können sich die akustischen Eigenschaften des Festkörpers in der Umgebung des Schallpulses signifikant ändern, welches sich dann in einer Formänderung des Schallpulses widerspiegelt. Ich konnte mittels zeitaufgelöster Brillouinstreuung das Aufsteilen der Wellenfronten eines Hyperschallpulses bestehend aus einem einzigen Oszillationszyklus beobachten. Hierbei wurden Hyperschallwellen mit einer Dehnungsamplitude von bis zu 1% angeregt, wobei ich diesen Wert mittels ultraschneller Röntgenbeugung kalibrieren konnte. Mit diesem ersten Experiment als Basis entwickelten wir die Idee der nichtlinearen Wellenmischung von schmalbandigen Phonon-Wellenpaketen unter dem Titel "nichtlineare Phononik" in Analogie zur nichtlinearen Optik, welche sich aus einer Reihe von verblüffenden optischen Phänomenen bei sehr hohen elektrischen Feldstärken zusammensetzt. Solche Phänomene sind z. B. die optische Frequenzverdopplung, das Vier-Wellen-Mischen oder Solitone. Nur sind im Falle von kohärenten Phononen die erzeugten Spektren sehr breitbandig, was die Untersuchung von spezifischen Phononen mit festem Impuls und definierter Frequenz fast unmöglich macht. Aus diesem Grund testete ich verschiedene Methoden um schmalbandige Phonon-Wellenpakete anzuregen, welche im Wesentlichen aus Phononen bestimmten Impulses und definierter Frequenz bestehen. Dafür wurden schließ lich epitaktisch auf ein dielektrisches Substrat aufgewachsene Metallfilme mit einen Laserpulszug angeregt. Hier sorgen die Lichtpulse für eine periodische Oszillation des Metalfilms, wobei die Anregefrequenz durch den inversen zeitlichen Abstand der Lichtpulse gegeben ist. Diese periodische Oszillation sendet dann ein Hyperschallwellenpaket eben dieser Frequenz ins Substrat. Die Monochromie dieser Wellenpakete konnte dabei mittels ultraschneller Brillouin- und Röntgenstreuung bestätigt werden. Durch die Benutzung dieser schmalbandigen Phonon-Wellenpakete war es mir möglich, die Frequenzverdopplung (SHG) von kohärenten Phononen zu beobachten, was ein erstes Beispiel für die nichtlineare Wellenmischung von nanometrischen Phonon-Wellenpaketen ist. KW - hypersound KW - nonlinear acoustics KW - ultrafast KW - Brillouin scattering KW - x-ray diffraction KW - self-steepening KW - second-harmonic generation KW - Phononen KW - Wechselwirkung KW - Anharmonizität KW - nichtlineare Wellenmischung KW - zweite Harmonische KW - Phononenstreuung KW - nichlineare Phononik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93860 ER - TY - THES A1 - Maerten, Lena T1 - Spectroscopic perspectives on ultrafast coupling phenomena in perovskite oxides T1 - Spektroskopische Untersuchung ultraschneller Kopplungsphänomene in Perowskit-Oxiden N2 - In this thesis, I study ultrafast dynamics in perovskite oxides using time resolved broadband spectroscopy. I focus on the observation of coherent phonon propagation by time resolved Brillouin scattering: following the excition of metal transducer films with a femtosecond infrared pump pulse, coherent phonon dynamics in the GHz frequency range are triggered. Their propagation is monitored using a delayed white light probe pulse. The technique is illustrated on various thin films and multilayered samples. I apply the technique to investigate the linear and nonlinear acoustic response in bulk SrTiO_3, which displays a ferroelastic phase transition from a cubic to a tetragonal structural phase at T_a=105 K. In the linear regime, I observe a coupling of the observed acoustic phonon mode to the softening optic modes describing the phase transition. In the nonlinear regime, I find a giant slowing down of the sound velocity in the low temperature phase that is only observable for a strain amplitude exceeding the tetragonality of the material. It is attributed to a coupling of the high frequency phonons to ferroelastic domain walls in the material. I propose a new mechanism for the coupling of strain waves to the domain walls that is only effective for high amplitude strain. A detailed study of the phonon attenuation across a wide temperature range shows that the phonon attenuation at low temperatures is influenced by the domain configuration, which is determined by interface strain. Preliminary measurements on magnetic-ferroelectric multilayers reveal that the excitation fluence needs to be carefully controlled when dynamics at phase transitions are studied. N2 - In dieser Doktorarbeit untersuche ich ultraschnelle Dynamik in perovskitischen Oxiden mittels zeitaufgelöster optischer Spektroskopie. Der Schwerpunkt liegt dabei auf Phononendynamik, die mithilfe von zeitaufgelöster Brillouin-Streuung sichtbar gemacht wird: durch die Anregung einer metallischen Transducer-Schicht mit einem ultrakurzen Anregepuls wird eine kohärente Phononendynamik im GHz Frequenzbereich erzeugt. Die Ausbreitung der Schallpulse wird mit einem Weißlicht-Abfragepuls aufgezeichnet. Diese Methode wird am Beispiel verschiedener Dünnschicht- und Übergitterproben illustriert. Die Methode und das gewonnene Verständnis wende ich an, um lineare und nichtlineare akustische Eigenschaften an einem SrTiO_3-Kristall zu untersuchen. Dieser weist einen ferroelastischen Phasenübergang von kubischer zu tetragonaler Kristallstruktur bei T_a=105 K auf. Im linearen Regime beobachte ich eine Kopplung der untersuchten akustischen Mode an eine weichwerdende optische Mode, welche den Phasenübergang charakterisiert. Im nichtlinearen Regime tritt eine gigantische Verlangsamung der Schallgeschwindigkeit unterhalb von T_a auf, wenn die induzierte Gitterverzerrung die Tetragonalität des Materials übersteigt. Dies kann auf eine Kopplung der hochfrequenten akustischen Mode an ferroelastische Domänenwände bei tiefen Temperaturen zurückgeführt werden. Ich entwickle einen neuen Mechanismus, der die Kopplung der Verzerrungswelle an die Domänenwände beschreibt. Eine detaillierte Untersuchung der Phononendämpfung in SrTiO_3 über einen weiten Temperaturbereich zeigt, dass diese bei tiefen Temperaturen durch die Domänenkonfiguration beeinflusst ist. Die Domänenkonfiguration ist durch Verzerrungen an der Kristall-Transducer Grenzfläche bestimmt. Erste Untersuchungen an magnetisch-ferroelektrischen Übergittern zeigen, dass die Anregungsfluenz vorsichtig eingestellt werden muss, um die Dynamik an Phasenübergängen zu untersuchen. KW - coherent phonons KW - phonon dynamics KW - time resolved KW - Brillouin scattering KW - perovskite oxides KW - optical spectroscopy KW - hypersound propagation KW - phonon damping KW - domain wall motion KW - phonon backfolding KW - superlattice dispersion KW - kohärente Phononen KW - Phononen Dynamik KW - zeitaufgelöst KW - Brillouin Streuung KW - Perowskit-Oxide KW - optische Spektroskopie KW - Hyperschall Propagation KW - Phononen Dämpfung KW - Domänenwandbewegung KW - Phononen Rückfaltung KW - Übergitter Dispersion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77623 ER - TY - THES A1 - Schick, Daniel T1 - Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes T1 - Ultraschnelle Gitterdynamik in optisch angeregten Nanostrukturen : Femtosekunden-Röntgendiffraktion mit optimierten Auswerteroutinen N2 - Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects. N2 - Im Rahmen dieser Arbeit habe ich mich mit den komplexen Wechselwirkungen zwischen Elektronen- und Gitterdynamik in oxidischen Perowskit-Nanostrukturen beschäftigt. Dazu wurden verschiedene Proben mit intensiven, ultrakurzen Laserpulsen angeregt. Um die zeitliche Entwicklung der induzierten atomaren Umordnung zu untersuchen, wurden Femtosekunden-Pulse harter Röntgenstrahlung genutzt. Zunächst wurde die ultraschnelle Gitterdynamik in einfachen Modellsystemen mit zeitaufgelösten Röntgendiffraktionsexperimenten untersucht, um im Anschluss ähnliche Experimente an komplexeren Materialien mit mehreren Freiheitsgraden interpretieren zu können. Die Bewegung der Atome in einem Kristall kann über Anrege-Abtast-Verfahren direkt mit gepulster, harter Röntgenstrahlung gemessen werden. Die Dauer der Röntgenpulse muss dafür einige hundert Femtosekunden kurz sein. Um diese ultrakurzen Röntgenpulse zu erzeugen, habe ich eine lasergetriebene Plasma-Röntgenquelle aufgebaut. Der Aufbau wurde um ein stabiles Goniometer, einen zweidimensionalen Röntgendetektor und einen kryogenfreien Kryostat erweitert und in Bezug auf das Signal-zu-Rausch-Verhältnis und die Winkelauflösung optimiert. Durch die Entwicklung einer schnellen Methode zur Vermessung des reziproken Raums konnte erstmals an solch einer Quelle eine zweidimensionale Strukturanalyse mit Femtosekunden-Zeitauflösung realisiert werden. Die Anregung und Ausbreitung von kohärenten Phononen habe ich in optisch angeregten Dünnfilm- und Übergitterstrukturen untersucht. Eine entscheidende Rolle spielen dabei metallische SrRuO3 Schichten. Durch die quasi-instantane Kopplung des Gitters an die optisch angeregten Elektronen in SrRuO3 wird ein räumlich und zeitlich wohldefiniertes Druckprofil erzeugt. Dadurch kann der Einfluss der resultierenden kohärenten Gitterdynamik auf die zeitaufgelösten Röntgendiffraktionsdaten im Detail verstanden werden. Beobachtet wurde z.B. das Auftreten einer transienten Aufspaltung eines Bragg-Reflexes bei Dünnfilm- und Übergitterstrukturen aus SrRuO3. Außerdem wurde eine umfangreiche Simulationsumgebung entwickelt, mit deren Hilfe die ultraschnelle Dynamik und die dazugehörigen Röntgendiffraktionssignale in optisch angeregten eindimensionalen Kristallstrukturen berechnet werden können. Der von mir entwickelte experimentelle Aufbau sowie das Simulationspaket zur Datenanalyse und -interpretation wurden anschließend für die Untersuchung kohärenter Phononen in komplexeren Materialsystemen eingesetzt. Im Speziellen konnte ich in multiferroischem BiFeO3 eine stark lokalisierte Ladungsträgerverteilung nach einer optischen Femtosekunden-Anregung nachweisen. Sie ist die Ursache für einen quasi-instantanen und räumlich inhomogenen Druck, der die kohärenten Phononen in einem dünnen Film dieses Multiferroikums erzeugt. Außerdem habe ich die ultraschnelle Vermessung des reziproken Raums angewendet, um eine verzerrungsinduzierte Veränderung der Mosaizität in einem strukturell unvollkommenen Film aus ferroelektrischem Pb(Zr0.2Ti0.8)O3 zu verfolgen. Die Ergebnisse deuten auf eine ausschließlich durch strukturelle Defekte vermittelte Kopplung der atomaren Bewegungen parallel und senkrecht zur Flächennormalen des Filmes hin. KW - ultraschnelle Röntgendiffraktion KW - Gitterdynamik KW - Nanostruktur KW - optische Anregung KW - Perowskit KW - ultrafast X-ray diffraction KW - lattice dynamics KW - nanostructure KW - photoexcitation KW - perovskite Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-68827 ER - TY - THES A1 - Haseeb, Haider T1 - Charge and heat transport across interfaces in nanostructured porous silicon T1 - Ladungs- und Wärmetransport über Grenzflächen in nanostrukturiertem porösem Silizium N2 - This thesis discusses heat and charge transport phenomena in single-crystalline Silicon penetrated by nanometer-sized pores, known as mesoporous Silicon (pSi). Despite the extensive attention given to it as a thermoelectric material of interest, studies on microscopic thermal and electronic transport beyond its macroscopic characterizations are rarely reported. In contrast, this work reports the interplay of both. PSi samples synthesized by electrochemical anodization display a temperature dependence of specific heat 𝐶𝑝 that deviates from the characteristic 𝑇^3 behaviour (at 𝑇<50𝐾). A thorough analysis reveals that both 3D and 2D Einstein and Debye modes contribute to this specific heat. Additional 2D Einstein modes (~3 𝑚𝑒𝑉) agree reasonably well with the boson peak of SiO2 in pSi pore walls. 2D Debye modes are proposed to account for surface acoustic modes causing a significant deviation from the well-known 𝑇^3 dependence of 𝐶𝑝 at 𝑇<50𝐾. A novel theoretical model gives insights into the thermal conductivity of pSi in terms of porosity and phonon scattering on the nanoscale. The thermal conductivity analysis utilizes the peculiarities of the pSi phonon dispersion probed by the inelastic neutron scattering experiments. A phonon mean-free path of around 10 𝑛𝑚 extracted from the presented model is proposed to cause the reduced thermal conductivity of pSi by two orders of magnitude compared to p-doped bulk Silicon. Detailed analysis indicates that compound averaging may cause a further 10-50% reduction. The percolation threshold of 65% for thermal conductivity of pSi samples is subsequently determined by employing theoretical effective medium models. Temperature-dependent electrical conductivity measurements reveal a thermally activated transport process. A detailed analysis of the activation energy 𝐸𝐴𝜎 in the thermally activated transport exhibits a Meyer Neldel compensation rule between different samples that originates in multi-phonon absorption upon carrier transport. Activation energies 𝐸𝐴𝑆 obtained from temperature-dependent thermopower measurements provide further evidence for multi-phonon assisted hopping between localized states as a dominant charge transport mechanism in pSi, as they systematically differ from the determined 𝐸𝐴𝜎 values. N2 - Diese Dissertation befasst sich mit Wärme- und Ladungstransportphänomenen in mesoporösem Silizium (pSi) oder etwas genauer in einkristallinem Silizium, welches mit nanometergroßen Poren durchsetzt ist. Trotz der großen Aufmerksamkeit, die diesem thermoelektrischen Material zuteil wird, wird nur selten über Studien zum mikroskopischen thermischen und elektronischen Transport jenseits seiner makroskopischen Charakterisierung berichtet. Im Gegensatz dazu wird in dieser Studie das Zusammenspiel von beidem untersucht. PSi-Proben, die durch elektrochemische Anodisierung synthetisiert wurden, zeigen eine Temperaturabhängigkeit der spezifischen Wärme 𝐶𝑝, die vom charakteristischen 𝑇3 Verhalten (bei 𝑇<50𝐾) abweicht. Eine gründliche Analyse zeigt, dass sowohl 3D- als auch 2D-Einstein- und Debye-Moden zu dieser spezifischen Wärme beitragen. Zusätzliche 2D-Einstein-Moden (~3 𝑚𝑒𝑉) stimmen gut mit dem Bosonen-Peak von SiO2 in teilweise oxidierten pSi-Porenwänden überein. 2D-Debye-Moden werden vorgeschlagen, um akustische Oberflächenmoden zu erklären, die eine signifikante Abweichung von der bekannten 𝑇3Abhängigkeit von 𝐶𝑝 bei 𝑇<50𝐾 verursachen. Ein neuartiges theoretisches Modell gibt Einblicke in die Wärmeleitfähigkeit von pSi in Bezug auf Porosität und Phononenstreuung auf der Nanoskala. Die Analyse der Wärmeleitfähigkeit nutzt die Besonderheiten der pSi-Phononendispersion, die durch Experimente mit inelastischer Neutronenstreuung untersucht wurden. Ein mittlerer freier Weg der Phononen von etwa 10 𝑛𝑚, der aus dem vorgestellten Modell extrahiert wurde, wird als Ursache für die um zwei Größenordnungen geringere Wärmeleitfähigkeit von pSi im Vergleich zu p-dotiertem Silizium vorgeschlagen. Eine detaillierte Analyse zeigt, dass die Porosität selbst eine weitere Verringerung der Wärmeleitfähigkeit um 10-50% verursachen kann. Die Perkolationsschwelle von 65 % für die Wärmeleitfähigkeit von pSi-Proben wird anschließend mit Hilfe eines theoretischen Ansatzes für effektive Medien bestimmt. Temperaturabhängige Messungen der elektrischen Leitfähigkeit lassen einen thermisch aktivierten Transportprozess erkennen. Eine detaillierte Analyse der Aktivierungsenergie 𝐸𝐴𝜎 im thermisch aktivierten Transport zeigt eine Meyer-Neldel-Kompensationsregel zwischen verschiedenen Proben, die auf Multiphononenabsorption beim Ladungsträgertransport zurückzuführen ist. Aktivierungsenergien 𝐸𝐴𝑆, die aus temperaturabhängigen Seebeck-Messungen gewonnen wurden, liefern weitere Beweise für Multiphononen-unterstütztes Springen zwischen lokalisierten Zuständen als dominanten Ladungstransportmechanismus in pSi, da sie sich systematisch von den ermittelten 𝐸𝐴𝜎 Werten unterscheiden. KW - mesoporous KW - silicon KW - Meyer-Neldel-rule KW - nanomaterials KW - Meyer-Neldel-Regel KW - mesoporös KW - Nanomaterialien KW - Silizium Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-611224 ER - TY - THES A1 - Tchoumba Kwamen, Christelle Larodia T1 - Investigating the dynamics of polarization reversal in ferroelectric thin films by time-resolved X-ray diffraction T1 - Untersuchung der Dynamik der Polarisationsumkehr in ferroelektrischen Dünnschichten durch zeitaufgelöste Röntgenbeugung N2 - Ferroic materials have attracted a lot of attention over the years due to their wide range of applications in sensors, actuators, and memory devices. Their technological applications originate from their unique properties such as ferroelectricity and piezoelectricity. In order to optimize these materials, it is necessary to understand the coupling between their nanoscale structure and transient response, which are related to the atomic structure of the unit cell. In this thesis, synchrotron X-ray diffraction is used to investigate the structure of ferroelectric thin film capacitors during application of a periodic electric field. Combining electrical measurements with time-resolved X-ray diffraction on a working device allows for visualization of the interplay between charge flow and structural motion. This constitutes the core of this work. The first part of this thesis discusses the electrical and structural dynamics of a ferroelectric Pt/Pb(Zr0.2,Ti0.8)O3/SrRuO3 heterostructure during charging, discharging, and polarization reversal. After polarization reversal a non-linear piezoelectric response develops on a much longer time scale than the RC time constant of the device. The reversal process is inhomogeneous and induces a transient disordered domain state. The structural dynamics under sub-coercive field conditions show that this disordered domain state can be remanent and can be erased with an appropriate voltage pulse sequence. The frequency-dependent dynamic characterization of a Pb(Zr0.52,Ti0.48)O3 layer, at the morphotropic phase boundary, shows that at high frequency, the limited domain wall velocity causes a phase lag between the applied field and both the structural and electrical responses. An external modification of the RC time constant of the measurement delays the switching current and widens the electromechanical hysteresis loop while achieving a higher compressive piezoelectric strain within the crystal. In the second part of this thesis, time-resolved reciprocal space maps of multiferroic BiFeO3 thin films were measured to identify the domain structure and investigate the development of an inhomogeneous piezoelectric response during the polarization reversal. The presence of 109° domains is evidenced by the splitting of the Bragg peak. The last part of this work investigates the effect of an optically excited ultrafast strain or heat pulse propagating through a ferroelectric BaTiO3 layer, where we observed an additional current response due to the laser pulse excitation of the metallic bottom electrode of the heterostructure. N2 - Ferroika haben aufgrund vielfältiger Anwendungsmöglichkeiten in Sensoren, Motoren und Speichermedien in den letzten Jahren viel Aufmerksamkeit erhalten. Das Interesse für technologische Anwendungen ist in ihren einzigartigen Eigenschaften wie Ferroelektrizität und Piezoelektrizität begründet. Um die Eigenschaften dieser Materialien zu optimieren ist es notwendig, die Kopplung zwischen ihrer Nanostruktur und der zeitabhängigen Antwort auf die Anregung zu verstehen, welcher von der Atomstruktur der Einheitszelle abhängig ist. In dieser Arbeit wird Röntgenbeugung an einem Synchrotron verwendet, um die Struktur eines ferroelektrischen Dünnschichtkondensators während eines angelegten elektrischen Feld zu beobachten. Den Kern dieser Arbeit bildet die Kombination aus elektrischen zeitaufgelösten Röntgenbeugungsmessungen an einem betriebsfähigen Kondensator, was die Visualisierung des Zusammenspiels zwischen Ladungsbewegung und Strukturdynamik ermöglicht. Der erste Teil der Arbeit befasst sich mit der elektrischen und strukturellen Dynamik einer ferroelektrischen Pt/Pb(Zr0.2,Ti0.8)O3/SrRuO3 Heterostruktur während des Ladens, Entladens und der Polarisationsumkehr. Nach der Umkehr der Polarisation bildet sich auf einer längeren Zeitskala als die RC-Zeitkonstante der Probe ein nichtlineares piezoelektrisches Signal aus. Der Umkehrungsprozess ist inhomogen und induziert einen vorübergehenden Zustand ungeordneter Domänen. Die strukturelle Dynamik mit einem angelegten elektrischen Feld unterhalb des Koerzitivfelds zeigt, dass dieser ungeordnete Zustand remanent sein kann und mit einer entsprechenden Abfolge von Spannungspulsen wieder entfernt werden kann. Die frequenzabhängige Charakterisierung der Dynamik einer Pb(Zr0.52,Ti0.48)O3 Schicht mit einer Zusammensetzung, die der morphotropen Phasengrenze entspricht, zeigt, dass bei hohen Frequenzen die begrenzte Domänenwandgeschwindigkeit eine Phasenverzögerung zwischen dem angelegten Feld und dem strukturellen sowie dem elektrischen Signal verursacht. Eine externe Änderung der RC-Zeitkonstante verzögert den Schaltstrom und verbreitert die elektromechanische Hysteresekurve, während im Kristall eine höhere kompressive piezoeletrische Spannung erzeugt wird. In dem zweiten Teil dieser Arbeit wurde der reziproke Raum von multiferroischen dünnen BiFeO3 Filmen vermessen, um die Domänenstruktur zu identifizieren und die Entwicklung eines inhomogenen piezoelektrischen Signals während der Polarisationsumkehr zu untersuchen. Das Aufspalten des Bragg Reflexes ist ein Hinweis auf die Existenz von 109° Domänen. Der letzte Teil der Arbeit beschäftigt sich mit dem Effekt, den ein durch optische Anregung erzeugter ultraschneller Verspannungs- oder Wärmepuls hervorruft, der durch eine ferroelektrische BaTiO3 Schicht propagiert. Dabei wurde durch die Anregung der unteren metallischen Elektrode der Heterostruktur durch den Laserpuls ein zusätzliches Ladungssignal beobachtet. KW - ferroelectrics KW - X-ray diffraction KW - structural dynamics KW - Ferroelektrika KW - Röntgenbeugung KW - Strukturdynamik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427815 ER -