TY - THES A1 - Rodriguez Zuluaga, Juan T1 - Electric and magnetic characteristics of equatorial plasma depletions T1 - Elektrische und magnetische Beschreibung von äquatorialen Plasma-Verarmungen BT - an observational assessment using the Swarm mission BT - eine empirische Beurteilung mit der Satellitenmission Swarm N2 - Near-Earth space represents a significant scientific and technological challenge. Particularly at magnetic low-latitudes, the horizontal magnetic field geometry at the dip equator and its closed field-lines support the existence of a distinct electric current system, abrupt electric field variations and the development of plasma irregularities. Of particular interest are small-scale irregularities associated with equatorial plasma depletions (EPDs). They are responsible for the disruption of trans-ionospheric radio waves used for navigation, communication, and Earth observation. The fast increase of satellite missions makes it imperative to study the near-Earth space, especially the phenomena known to harm space technology or disrupt their signals. EPDs correspond to the large-scale structure (i.e., tens to hundreds of kilometers) of topside F region irregularities commonly known as Spread F. They are observed as depleted-plasma density channels aligned with the ambient magnetic field in the post-sunset low-latitude ionosphere. Although the climatological variability of their occurrence in terms of season, longitude, local time and solar flux is well-known, their day to day variability is not. The sparse observations from ground-based instruments like radars and the few simultaneous measurements of ionospheric parameters by space-based instruments have left gaps in the knowledge of EPDs essential to comprehend their variability. In this dissertation, I profited from the unique observations of the ESA’s Swarm constellation mission launched in November 2013 to tackle three issues that revealed novel and significant results on the current knowledge of EPDs. I used Swarm’s measurements of the electron density, magnetic, and electric fields to answer, (1.) what is the direction of propagation of the electromagnetic energy associated with EPDs?, (2.) what are the spatial and temporal characteristics of the electric currents (field-aligned and diamagnetic currents) related to EPDs, i.e., seasonal/geographical, and local time dependencies?, and (3.) under what conditions does the balance between magnetic and plasma pressure across EPDs occur? The results indicate that: (1.) The electromagnetic energy associated with EPDs presents a preference for interhemispheric flows; that is, the related Poynting flux directs from one magnetic hemisphere to the other and varies with longitude and season. (2.) The field-aligned currents at the edges of EPDs are interhemispheric. They generally close in the hemisphere with the highest Pedersen conductance. Such hemispherical preference presents a seasonal/longitudinal dependence. The diamagnetic currents increase or decrease the magnetic pressure inside EPDs. These two effects rely on variations of the plasma temperature inside the EPDs that depend on longitude and local time. (3.) EPDs present lower or higher plasma pressure than the ambient. For low-pressure EPDs the plasma pressure gradients are mostly dominated by variations of the plasma density so that variations of the temperature are negligible. High-pressure EPDs suggest significant temperature variations with magnitudes of approximately twice the ambient. Since their occurrence is more frequent in the vicinity of the South Atlantic magnetic anomaly, such high temperatures are suggested to be due to particle precipitation. In a broader context, this dissertation shows how dedicated satellite missions with high-resolution capabilities improve the specification of the low-latitude ionospheric electrodynamics and expand knowledge on EPDs which is valuable for current and future communication, navigation, and Earth-observing missions. The contributions of this investigation represent several ’firsts’ in the study of EPDs: (1.) The first observational evidence of interhemispheric electromagnetic energy flux and field-aligned currents. (2.) The first spatial and temporal characterization of EPDs based on their associated field-aligned and diamagnetic currents. (3.) The first evidence of high plasma pressure in regions of depleted plasma density in the ionosphere. These findings provide new insights that promise to advance our current knowledge of not only EPDs but the low-latitude post-sunset ionosphere environment. N2 - Der erdnahe Weltraum stellt eine bedeutende wissenschaftliche und technologische Herausforderung dar. Insbesondere in niedrigeren magnetischen Breitengraden unterstützen die horizontale Geometrie des Magnetfelds und seine geschlossenen Feldlinien das Vorhandensein eines speziellen elektrischen Stromsystems, abrupte Änderungen der elektrischen Felder und das Auftreten von Plasmairregularitäten. Von besonderem Interesse sind regionale Unregelmäßigkeiten im Zusammenhang mit äquatorialen Plasma-Verarmungen (EPDs, Abkürzung aus dem Englischen für „equatorial plasma depletions”). Sie stören trans-ionosphärischer Funkwellen, welche zur Positionierung, Kommunikation und Erd-beobachtung eingesetzt werden. Die schnelle Entwicklung von Satellitenmissionen macht das Verständnis der erdnahen Weltraumphänomene zu einer Priorität, insbesondere derjenigen, welche die Weltraumtechnologie schädigen oder ihre Signale stören können. Die EPDs und die damit verbundenen Plasmairregularitäten sind seit Beginn des Weltraumzeitalters eines der am häufigsten untersuchten Phänomene. EPDs sind großflächigen Strukturen (d. h. zehn bis hundert Kilometer), die auf Spread F Ereignisse zurückgeführt werden können. Sie äußern sich als mit dem Hintergrund-Magnetfeld ausgerichtete Kanäle verarmter Plasmadichte, welche in niedrigen Breiten in der Ionophäre nach Sonnenuntergang auftreten. Obwohl die klimatologische Variabilität des Auftretens von EPDs bezüglich der Jahreszeit, geografischen Länge, Ortszeit und des Sonnenzyklus wohl bekannt sind, trifft dies nicht für ihre Tag-zu-Tag-Variabilität zu. Die spärlichen Beobachtungen von bodengestützten Instrumenten, wie Radargeräten, und die wenigen gleichzeitigen Messungen ionosphärischer Parameter von weltraumgestützten Instrumenten auf erdnahen Umlaufbahnen haben Wissenslücken hinterlassen, die für das Verständnis der Variabilität von EPDs essentiell sind. In dieser Dissertation habe ich von einzigartigen Beobachtungen der im November 2013 gestarteten ESA Satellitenkonstellationsmission „Swarm“ profitiert, um drei Probleme zu bearbeiten, die neue und signifikante Ergebnisse zum aktuellen Wissen über EPDs enthüllten. Ich habe Swarms Messungen der Elektronendichte, des magnetischen und des elektrischen Feldes verwendet, um Folgendes zu beantworten: (1.) In welche Richtung breitet sich die mit den EPDs verbundene elektromagnetische Energie aus? (2.) Was sind die räumlichen und zeitlichen Eigenschaften der elektrischen Ströme (feldgerichtete und diamagnetische Ströme) in Bezug auf EPDs, d. h. wie hängen sie von der geografischen Länge, Jahreszeit und Lokalzeit ab? (3.) Unter welchen Bedingungen findet der mit EPDs verbundene Ausgleich zwischen magnetischem Druck und Plasmadruck statt? Die Ergebnisse zeigen, dass: (1.) Die mit EPDs verbundene elektromagnetische Energie bevorzugt interhemisphärische Strömungen, das heißt, der zugehörige Poynting-Fluss strömt von einer magnetischen Hemisphäre zur anderen und die Strömungsrichtung variiert mit geografischer Länge und Jahreszeit. (2.) Die feldgerichteten Ströme an den Rändern von EPDs sind interhemisphärisch. Im Allgemeinen schließen sie sich in der Hemisphäre mit der höchsten Pedersen-Leitfähigkeit. Die derartige hemisphärische Präferenz zeigt eine Abhängigkeit bezüglich der Jahreszeit/geografischen Länge. Die diamagnetischen Ströme erhöhen oder verringern den magnetischen Druck innerhalb der EPDs. Diese beiden Effekte beruhen auf Variationen der Plasmatemperatur innerhalb der EPDs, die von der geografischen Länge und der Lokalzeit abhängt. (3.) EPDs weisen einen höheren oder niedrigeren Plasmadruck als ihre Umgebung auf. In Niederdruck-EPDs werden die Plasmadruckgradienten meist durch Variationen der Plasmadichte hervorgerufen, sodass Temperaturschwankungen vernachlässigbar sind. Hochdruck-EPDs deuten auf hohe innere Temperaturen hin, etwa das Zweifache der Umgebungstemperatur. Aufgrund ihres häufigeren Auftretens in der Nähe der Südatlantischen Magnetfeldanomalie wird vermutet, dass solche hohen Temperaturen auf den Einfall hochenergetischer Teilchen zurückzuführen sind. In einem breiteren Kontext zeigt diese Dissertation auf, wie spezielle Satellitenmissionen mit hohem Auflösungsvermögen die Spezifikation der ionoshärischen Elektrodynamik in niedrigen Breiten und das Verständnis von EPDs verbessern, was wertvoll für aktuelle und zukünfte Kommunikatoins-, Positionierungs- sowie Erdbeobachtungsmissionen ist. Die Beiträge dieser Arbeit stellen gleich mehrere "Premieren" in der EPD-Forschung dar: (1.) Der erste empirische Nachweis interhemisphärischer elektromagnetischer Energieflüsse und feldgerichteter Ströme. (2.) Die erste raum-zeitliche Beschreibung von EPDs auf der Grundlage ihrer assoziierten feldgerichteten und diamagnetischen Ströme. (3.) Der erste Nachweis hohen Plasmadrucks in Regionen verminderter Plasmadichte in der Ionosphäre. Diese Forschungsergebnisse liefern neue Erkenntnisse, die nicht nur unser derzeitiges Wissen über EPDs, sondern auch jenes über die ionosphärische Domaine in niedrigen Breiten nach Sonnenuntergang fördert. KW - equatorial plasma depletions KW - electric and magnetic fields KW - spread F KW - ionosphere KW - swarm mission KW - äquatorialen Plasma-Verarmungen KW - elektrische und magnetische Felder KW - Spread F KW - Ionosphäre KW - Satellitenmission Swarm Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445873 ER - TY - THES A1 - Perdigón-Toro, Lorena T1 - On the Generation and Fate of Free Carriers in Non-Fullerene Acceptor Organic Solar Cells N2 - Organic solar cells offer an efficient and cost-effective alternative for solar energy harvesting. This type of photovoltaic cell typically consists of a blend of two organic semiconductors, an electron donating polymer and a low molecular weight electron acceptor to create what is known as a bulk heterojunction (BHJ) morphology. Traditionally, fullerene-based acceptors have been used for this purpose. In recent years, the development of new acceptor molecules, so-called non-fullerene acceptors (NFA), has breathed new life into organic solar cell research, enabling record efficiencies close to 19%. Today, NFA-based solar cells are approaching their inorganic competitors in terms of photocurrent generation, but lag in terms of open circuit voltage (V_OC). Interestingly, the V_OC of these cells benefits from small offsets of orbital energies at the donor-NFA interface, although previous knowledge considered large energy offsets to be critical for efficient charge carrier generation. In addition, there are several other electronic and structural features that distinguish NFAs from fullerenes. My thesis focuses on understanding the interplay between the unique attributes of NFAs and the physical processes occurring in solar cells. By combining various experimental techniques with drift-diffusion simulations, the generation of free charge carriers as well as their recombination in state-of-the-art NFA-based solar cells is characterized. For this purpose, solar cells based on the donor polymer PM6 and the NFA Y6 have been investigated. The generation of free charge carriers in PM6:Y6 is efficient and independent of electric field and excitation energy. Temperature-dependent measurements show a very low activation energy for photocurrent generation (about 6 meV), indicating barrierless charge carrier separation. Theoretical modeling suggests that Y6 molecules have large quadrupole moments, leading to band bending at the donor-acceptor interface and thereby reducing the electrostatic Coulomb dissociation barrier. In this regard, this work identifies poor extraction of free charges in competition with nongeminate recombination as a dominant loss process in PM6:Y6 devices. Subsequently, the spectral characteristics of PM6:Y6 solar cells were investigated with respect to the dominant process of charge carrier recombination. It was found that the photon emission under open-circuit conditions can be almost entirely attributed to the occupation and recombination of Y6 singlet excitons. Nevertheless, the recombination pathway via the singlet state contributes only 1% to the total recombination, which is dominated by the charge transfer state (CT-state) at the donor-acceptor interface. Further V_OC gains can therefore only be expected if the density and/or recombination rate of these CT-states can be significantly reduced. Finally, the role of energetic disorder in NFA solar cells is investigated by comparing Y6 with a structurally related derivative, named N4. Layer morphology studies combined with temperature-dependent charge transport experiments show significantly lower structural and energetic disorder in the case of the PM6:Y6 blend. For both PM6:Y6 and PM6:N4, disorder determines the maximum achievable V_OC, with PM6:Y6 benefiting from improved morphological order. Overall, the obtained findings point to avenues for the realization of NFA-based solar cells with even smaller V_OC losses. Further reduction of nongeminate recombination and energetic disorder should result in organic solar cells with efficiencies above 20% in the future. N2 - Organische Solarzellen bieten eine effiziente und kostengünstige Alternative für die Nutzung von Sonnenenergie. Bei dieser Art von Photovoltaikzellen werden in der Regel zwei organische Halbleiter, ein elektronenspendendes Polymer und ein niedermolekularer Elektronenakzeptor gemischt, um eine sogenannte „Bulk-Heterojunction“ (BHJ)-Morphologie zu erzeugen. Traditionell wurden hierfür Fulleren-basierte Akzeptoren verwendet. In den letzten Jahren hat die Entwicklung neuer Akzeptor-Moleküle, so genannter Nicht-Fulleren-Akzeptoren (NFA), der organischen Solarzellenforschung neues Leben eingehaucht und damit Rekordwirkungsgrade >19 % ermöglicht. Heutzutage nähern sich NFA-basierte Solarzellen ihren anorganischen Konkurrenten bezüglich der Photostromerzeugung an, nicht jedoch im Hinblick auf die Leerlaufspannung (V_OC). Interessanterweise profitiert der V_OC dieser Zellen von kleinen Offsets der Orbitalenergien an der Donor-NFA-Grenzfläche, obwohl nach bisherigem Wissen große Energieoffsets als entscheidend für die effiziente Ladungsträgergenerierung an der Heterogrenzfläche galten. Darüber hinaus gibt es eine Reihe weiterer elektronischer und struktureller Merkmale, die NFAs von Fullerenen unterscheiden. Meine Dissertation konzentriert sich auf ein tiefgreifendes Verständnis des Zusammenspiels der einzigartigen Eigenschaften von NFAs und den physikalischen Prozessen in daraus hergestellten Solarzellen. Durch die Kombination verschiedener experimenteller Techniken mit Drift-Diffusions-Simulationen wird die Erzeugung freier Ladungsträger sowie deren Rekombination in modernen NFA-basierten Solarzellen charakterisiert. Zu diesem Zweck wurden Solarzellen auf Basis des Donor-Polymers PM6 und des NFA Y6 untersucht. Die Erzeugung freier Ladungsträger in PM6:Y6 erweist sich dabei als effizient und unabhängig von elektrischem Feld und Anregungsenergie. Temperaturabhängige Messungen zeigen eine sehr geringe Aktivierungsenergie für die Photostromerzeugung (ca. 6 meV), was auf eine barrierefreie Ladungsträgertrennung hinweist. Theoretische Modellierungen legen nahe, dass Y6-Moleküle große Quadrupolmomente aufweisen, was zu einer Bandverbiegung an der Donor-Akzeptor-Grenzfläche führt und dabei die elektrostatische Coulombsch-Dissoziationsbarriere reduziert. In dieser Hinsicht identifiziert diese Arbeit die schlechte Extraktion freier Ladungen in Konkurrenz zur „nongeminalen“ Rekombination als einen dominanten Verlustprozess in PM6:Y6 Zellen. In weiterer Folge wurden die spektralen Eigenschaften von PM6:Y6-Solarzellen im Hinblick auf den dominanten Prozess der Ladungsträgergenerierung und rekombination untersucht. Es zeigte sich, dass die Photonenemission unter Leerlaufbedingungen fast vollständig auf die Besetzung und Rekombination von Y6-Singlet-Exzitonen zurückgeführt werden kann. Trotzdem trägt der Rekombinationspfad über den Singlett-Zustand nur zu 1 % zur gesamten Rekombination bei, die über den Ladungstransfer-Zustand (CT-state) an der Donor-Akzeptor-Grenzfläche dominiert wird. Weitere V_OC Gewinne sind daher nur zu erwarten, wenn die Dichte und/oder die Rekombinationsrate dieser CT-Zustände erheblich reduziert werden kann. Schließlich wird die Rolle der energetischen Unordnung in NFA-Solarzellen durch den Vergleich von Y6 mit einem strukturverwandten Derivat, genannt N4, untersucht. Untersuchungen zur Schichtmorphologie in Kombination mit Experimenten zum temperaturabhängigen Ladungstransport zeigen eine deutlich geringere strukturelle und energetische Unordnung im Fall des PM6:Y6 Blends. Sowohl für PM6:Y6 als auch für PM6:N4 bestimmt die Unordnung den maximal erreichbaren V_OC, wobei PM6:Y6 von der verbesserten morphologischen Ordnung profitiert. Insgesamt weisen die gewonnenen Erkenntnisse Wege für die Realisierung von NFA-basierten Solarzellen mit noch kleineren V_OC-Verlusten auf. Durch die weitere Reduzierung der „nongeminaten“ Rekombination als auch der energetischen Unordnung sollten in Zukunft organische Solarzellen mit einem Wirkungsgrad von über 20 % möglich werden. T2 - Über die Photogenerierung und Rekombination freier Ladungsträger in organischen Solarzellen mit Nicht-Fulleren-Akzeptoren KW - organic solar cells KW - non-fullerene acceptors KW - free charge generation KW - free charge recombination KW - energetic disorder KW - organic semiconductors KW - energetische Unordnung KW - Generierung freier Ladungsträger KW - freie Ladungsträger Rekombination KW - Nicht-Fulleren-Akzeptoren KW - organische Halbleiter KW - organische Solarzellen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558072 ER -