TY - JOUR A1 - Doerries, Timo J. A1 - Chechkin, Aleksei A1 - Schumer, Rina A1 - Metzler, Ralf T1 - Rate equations, spatial moments, and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.014105 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 1 PB - The American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Kluge, Lucas A1 - Socolar, Joshua E. S. A1 - Schöll, Eckehard T1 - Random logic networks BT - from classical Boolean to quantum dynamics JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate dynamical properties of a quantum generalization of classical reversible Boolean networks. The state of each node is encoded as a single qubit, and classical Boolean logic operations are supplemented by controlled bit-flip and Hadamard operations. We consider synchronous updating schemes in which each qubit is updated at each step based on stored values of the qubits from the previous step. We investigate the periodic or quasiperiodic behavior of quantum networks, and we analyze the propagation of single site perturbations through the quantum networks with input degree one. A nonclassical mechanism for perturbation propagation leads to substantially different evolution of the Hamming distance between the original and perturbed states. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.064308 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 6 PB - American Physical Society CY - Woodbury, NY ER - TY - JOUR A1 - Chigarev, Vladimir A1 - Kazakov, Alexey A1 - Pikovsky, Arkady T1 - Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We consider several examples of dynamical systems demonstrating overlapping attractor and repeller. These systems are constructed via introducing controllable dissipation to prototypic models with chaotic dynamics (Anosov cat map, Chirikov standard map, and incompressible three-dimensional flow of the ABC-type on a three-torus) and ergodic non-chaotic behavior (skew-shift map). We employ the Kantorovich-Rubinstein-Wasserstein distance to characterize the difference between the attractor and the repeller, in dependence on the dissipation level. Y1 - 2020 U6 - https://doi.org/10.1063/5.0007230 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Caesar, Levke A1 - Rahmstorf, Stefan A1 - Feulner, Georg T1 - Reply to comment on 'On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming' T2 - Environmental research letters N2 - In their comment on our paper (Caesar et al 2020 Environ. Res. Lett. 15 024003), Chen and Tung (hereafter C&T) argue that our analysis, showing that over the last decades Atlantic meridional overturning circulation (AMOC) strength and global mean surface temperature (GMST) were positively correlated, is incorrect. Their claim is mainly based on two arguments, neither of which is justified: first, C&T claim that our analysis is based on 'established evidence' that was only true for preindustrial conditions-this is not the case. Using data from the modern period (1947-2012), we show that the established understanding (i.e. deep-water formation in the North Atlantic cools the deep ocean and warms the surface) is correct, but our analysis is not based on this fact. Secondly, C&T claim that our results are based on a statistical analysis of only one cycle of data which was furthermore incorrectly detrended. This, too, is not true. Our conclusion that a weaker AMOC delays the current surface warming rather than enhances it, is based on several independent lines of evidence. The data we show to support this covers more than one cycle and the detrending (which was performed to avoid spurious correlations due to a common trend) does not affect our conclusion: the correlation between AMOC strength and GMST is positive. We do not claim that this is strong evidence that the two time series are in phase, but rather that this means that the two time series are not anti-correlated. KW - Atlantic meridional overturning circulation KW - global surface warming KW - ocean heat uptake Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/abc776 SN - 1748-9326 VL - 16 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kupfer, Thomas A1 - Bauer, Evan B. A1 - van Roestel, Jan A1 - Bellm, Eric C. A1 - Bildsten, Lars A1 - Fuller, Jim A1 - Prince, Thomas A. A1 - Heber, Ulrich A1 - Geier, Stephan A1 - Green, Matthew J. A1 - Kulkarni, Shrinivas R. A1 - Bloemen, Steven A1 - Laher, Russ R. A1 - Rusholme, Ben A1 - Schneider, David T1 - Discovery of a Double-detonation Thermonuclear Supernova Progenitor JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a P (orb) = 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star, M (sdB) = 0.383 +/- 0.028 M (circle dot) with a massive white dwarf companion, M (WD) = 0.725 +/- 0.026 M (circle dot). From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of approximate to 25 Myr whereas our MESA model predicts an sdB age of approximate to 170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion approximate to 25 Myr ago. Using the MESA stellar evolutionary code we find that the sdB star will start mass transfer in approximate to 6 Myr and in approximate to 60 Myr the white dwarf will reach a total mass of 0.92 M (circle dot) with a thick helium layer of 0.17 M (circle dot). This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least approximate to 1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions. Y1 - 2022 U6 - https://doi.org/10.3847/2041-8213/ac48f1 SN - 2041-8205 SN - 2041-8213 VL - 925 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Schaffenroth, Veronika A1 - Casewell, Sarah L. A1 - Schneider, D. A1 - Kilkenny, David A1 - Geier, Stephan A1 - Heber, Ulrich A1 - Irrgang, Andreas A1 - Przybilla, Norbert A1 - Marsh, Thomas R. A1 - Littlefair, Stuart P. A1 - Dhillon, Vik S. T1 - A quantitative in-depth analysis of the prototype sdB plus BD system SDSS J08205+0008 revisited in the Gaia era JF - Monthly notices of the Royal Astronomical Society N2 - Subdwarf B stars are core-helium-burning stars located on the extreme horizontal branch (EHB). Extensive mass loss on the red giant branch is necessary to form them. It has been proposed that substellar companions could lead to the required mass loss when they are engulfed in the envelope of the red giant star. J08205+0008 was the first example of a hot subdwarf star with a close, substellar companion candidate to be found. Here, we perform an in-depth re-analysis of this important system with much higher quality data allowing additional analysis methods. From the higher resolution spectra obtained with ESO-VLT/XSHOOTER, we derive the chemical abundances of the hot subdwarf as well as its rotational velocity. Using the Gaia parallax and a fit to the spectral energy distribution in the secondary eclipse, tight constraints to the radius of the hot subdwarf are derived. From a long-term photometric campaign, we detected a significant period decrease of -3.2(8) x 10(-12) dd(-1). This can be explained by the non-synchronized hot subdwarf star being spun up by tidal interactions forcing it to become synchronized. From the rate of period decrease we could derive the synchronization time-scale to be 4 Myr, much smaller than the lifetime on EHB. By combining all different methods, we could constrain the hot subdwarf to a mass of 0.39-0.50 M-circle dot and a radius of R-sdB = 0.194 +/- 0.008 R-circle dot, and the companion to 0.061-0.071 M-circle dot with a radius of R-comp = 0.092 +/- 0.005 R-circle dot, below the hydrogen-burning limit. We therefore confirm that the companion is most likely a massive brown dwarf. KW - stars: abundances KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: horizontal branch KW - stars: low-mass KW - subdwarfs Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa3661 SN - 0035-8711 SN - 1365-2966 VL - 501 IS - 3 SP - 3847 EP - 3870 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Köhler, Raphael H. A1 - Handorf, Dörthe A1 - Jaiser, Ralf A1 - Dethloff, Klaus A1 - Zängl, Günther A1 - Majewski, Detlev A1 - Rex, Markus T1 - Improved circulation in the Northern hemisphere by adjusting gravity wave drag parameterizations in seasonal experiments with ICON-NWP JF - Earth and Space Science : ESS N2 - The stratosphere is one of the main potential sources for subseasonal to seasonal predictability in midlatitudes in winter. The ability of an atmospheric model to realistically simulate the stratospheric dynamics is essential in order to move forward in the field of seasonal predictions in midlatitudes. Earlier studies with the ICOsahedral Nonhydrostatic atmospheric model (ICON) point out that stratospheric westerlies in ICON are underestimated. This is the first extensive study on the evaluation of Northern Hemisphere stratospheric winter circulation with ICON in numerical weather prediction (NWP) mode. Seasonal experiments with the default setup are able to reproduce the basic climatology of the stratospheric polar vortex. However, westerlies are too weak and major stratospheric warmings too frequent in ICON. Both a reduction of the nonorographic, and a reduction of the orographic gravity wave and wake drag lead to a strengthening of the stratospheric vortex and a bias reduction, in particular in January. However, the effect of the nonorographic gravity wave drag scheme on the stratosphere is stronger. Stratosphere-troposphere coupling is intensified and more realistic due to a reduced gravity wave drag. Furthermore, an adjustment of the subgrid-scale orographic drag parameterization leads to a significant error reduction in the mean sea level pressure. As a result of these findings, we present our current suggested improved setup for seasonal experiments with ICON-NWP.
Plain Language Summary Although seasonal forecasts for midlatitudes have the potential to be highly beneficial to the public sector, they are still characterized by a large amount of uncertainty. Exact simulations of the circulation in the stratosphere can help to improve tropospheric predictability on seasonal time scales. For this reason, we investigate how well the new German atmospheric model is able to simulate the stratospheric circulation. The model reproduces the basic behavior of the Northern Hemisphere stratospheric polar vortex, but the westerly circulation in winter is underestimated. The stratospheric circulation is influenced by gravity waves that exert drag on the flow. These processes are only partly physically represented in the model, but are very important and are hence parameterized. By adjusting the parameterizations for the gravity wave drag, the stratospheric polar vortex is strengthened, thereby yielding a more realistic stratospheric circulation. In addition, the altered parameterizations improve the simulated surface pressure pattern. Based upon this, we present our current suggested improved model setup for seasonal experiments. Y1 - 2021 U6 - https://doi.org/10.1029/2021EA001676 SN - 2333-5084 VL - 8 IS - 3 PB - American Geophysical Union CY - Malden, Mass. ER - TY - JOUR A1 - Pelisoli, Ingrid A1 - Vos, Joris A1 - Geier, Stephan A1 - Schaffenroth, Veronika A1 - Baran, Andrzej S. T1 - Alone but not lonely BT - observational evidence that binary interaction is always required to form hot subdwarf stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30%) has prompted single star formation scenarios to be proposed.Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction.Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry.Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary.Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs. KW - subdwarfs KW - binaries: general KW - stars: variables: general Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/202038473 SN - 0004-6361 SN - 1432-0746 VL - 642 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Maier, Philipp A1 - Wolf, Jürgen A1 - Keilig, Thomas A1 - Krabbe, Alfred A1 - Duffard, Rene A1 - Ortiz, Jose-Luis A1 - Klinkner, Sabine A1 - Lengowski, Michael A1 - Müller, Thomas A1 - Lockowandt, Christian A1 - Krockstedt, Christian A1 - Kappelmann, Norbert A1 - Stelzer, Beate A1 - Werner, Klaus A1 - Geier, Stephan A1 - Kalkuhl, Christoph A1 - Rauch, Thomas A1 - Schanz, Thomas A1 - Barnstedt, Jürgen A1 - Conti, Lauro A1 - Hanke, Lars T1 - Towards a European Stratospheric Balloon Observatory BT - the ESBO design study T2 - Ground-based and Airborne Telescopes VII N2 - This paper presents the concept of a community-accessible stratospheric balloon-based observatory that is currently under preparation by a consortium of European research institutes and industry. We present the technical motivation, science case, instrumentation, and a two-stage image stabilization approach of the 0.5-m UV/visible platform. In addition, we briefly describe the novel mid-sized stabilized balloon gondola under design to carry telescopes in the 0.5 to 0.6 m range as well as the currently considered flight option for this platform. Secondly, we outline the scientific and technical motivation for a large balloon-based FIR telescope and the ESBO DS approach towards such an infrastructure. KW - astronomy KW - balloon telescopes KW - UV KW - far infrared KW - detectors KW - observatory Y1 - 2018 SN - 978-1-5106-1954-8 U6 - https://doi.org/10.1117/12.2319248 SN - 0277-786X SN - 1996-756X VL - 10700 PB - SPIE-INT Soc Optical Engineering CY - Bellingham ER - TY - JOUR A1 - Irrgang, Andreas A1 - Geier, Stephan A1 - Heber, Ulrich A1 - Kupfer, Thomas A1 - Fürst, F. T1 - PG 1610+062: a runaway B star challenging classical ejection mechanisms JF - Astronomy and astrophysics : an international weekly journal N2 - Hypervelocity stars are rare objects, mostly main-sequence (MS) B stars, traveling so fast that they will eventually escape from the Milky Way. Recently, it has been shown that the popular Hills mechanism, in which a binary system is disrupted via a close encounter with the supermassive black hole at the Galactic center, may not be their only ejection mechanism. The analyses of Gaia data ruled out a Galactic center origin for some of them, and instead indicated that they are extreme disk runaway stars ejected at velocities exceeding the predicted limits of classical scenarios (dynamical ejection from star clusters or binary supernova ejection). We present the discovery of a new extreme disk runaway star, PG 1610+062, which is a slowly pulsating B star bright enough to be studied in detail. A quantitative analysis of spectra taken with ESI at the Keck Observatory revealed that PG 1610+062 is a late B-type MS star of 4–5 M⊙ with low projected rotational velocity. Abundances (C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) were derived differentially with respect to the normal B star HD 137366 and indicate that PG 1610+062 is somewhat metal rich. A kinematic analysis, based on our spectrophotometric distance (17.3 kpc) and on proper motions from Gaia’s second data release, shows that PG 1610+062 was probably ejected from the Carina-Sagittarius spiral arm at a velocity of 550 ± 40 km s−1, which is beyond the classical limits. Accordingly, the star is in the top five of the most extreme MS disk runaway stars and is only the second among the five for which the chemical composition is known. KW - stars: abundances KW - stars: individual: HD 137366 KW - stars: kinematics and dynamics KW - stars: individual: PG 1610+062 KW - stars: early-type Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935429 SN - 1432-0746 VL - 628 PB - EDP Sciences CY - Les Ulis ER -