TY - JOUR A1 - Rätzel, Dennis A1 - Wilkens, Martin A1 - Menzel, Ralf T1 - Effect of polarization entanglement in photon-photon scattering JF - Physical review : A, Atomic, molecular, and optical physics N2 - It is found that the differential cross section of photon-photon scattering is a function of the degree of polarization entanglement of the two-photon state. A reduced general expression for the differential cross section of photon-photon scattering is derived by applying simple symmetry arguments. An explicit expression is obtained for the example of photon-photon scattering due to virtual electron-positron pairs in quantum electrodynamics. It is shown how the effect in this explicit example can be explained as an effect of quantum interference and that it fits with the idea of distance-dependent forces. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevA.95.012101 SN - 2469-9926 SN - 2469-9934 VL - 95 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gong, Chen Chris A1 - Klumpp, Stefan T1 - Modeling sRNA-Regulated Plasmid Maintenance JF - PLoS one N2 - We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin’s mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, a short half-life of the protein toxin is also beneficial to the function of the toxin-antitoxin system. In addition, we study a therapeutic scenario in which a competitor mRNA is introduced to sequester the sRNA antitoxin, causing the toxic protein to be expressed. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0169703 SN - 1932-6203 VL - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Fandrich, Artur A1 - Buller, Jens A1 - Memczak, Henry A1 - Stoecklein, W. A1 - Hinrichs, K. A1 - Wischerhoff, E. A1 - Schulz, B. A1 - Laschewsky, André A1 - Lisdat, Fred T1 - Responsive Polymer-Electrode Interface-Study of its Thermo- and pH-Sensitivity and the Influence of Peptide Coupling JF - Electrochimica acta : the journal of the International Society of Electrochemistry (ISE) N2 - This study introduces a thermally responsive, polymer-based electrode system. The key component is a surface-attached, temperature-responsive poly(oligoethylene glycol) methacrylate (poly(OEGMA)) type polymer bearing photoreactive benzophenone and carboxy groups containing side chains. The responsive behavior of the polymer in aqueous media has been investigated by turbidimetry measurements. Polymer films are formed on gold substrates by means of the photoreactive 2(dicyclohexylphosphino)benzophenone (DPBP) through photocrosslinking. The electrochemical behavior of the resulting polymer-substrate interface has been investigated in buffered [Fe(CN)6](3-)/[Fe (CN)6](4-)solutions at room temperature and under temperature variation by cyclic voltammetry (CV). The CV experiments show that with increasing temperature structural changes of the polymer layer occur, which alter the output of the electrochemical measurement. Repeated heating/cooling cycles analyzed by CV measurements and pH changes analyzed by quartz crystal microbalance with dissipation monitoring (QCM-D) reveal the reversible nature of the restructuring process. The immobilized films are further modified by covalent coupling of two small biomolecules - a hydrophobic peptide and a more hydrophilic one. These attached components influence the hydrophobicity of the layer in a different way the resulting change of the temperature-caused behavior has been studied by CV indicating a different state of the polymer after coupling of the hydrophobic peptide. KW - Stimuli-responsive materials KW - electroanalysis KW - modified electrode KW - bioreceptors KW - peptides KW - surface modification KW - cyclic voltammetry KW - IR ellipsometry KW - quartz crystal microbalance Y1 - 2017 U6 - https://doi.org/10.1016/j.electacta.2017.01.080 SN - 0013-4686 SN - 1873-3859 VL - 229 SP - 325 EP - 333 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zacharias, Michael A1 - Chen, Xuhui A1 - Wagner, Stefan T1 - Attenuation of TeV gamma-rays by the starlight photon field of the host galaxy JF - Monthly notices of the Royal Astronomical Society N2 - The absorption of TeV gamma-ray photons produced in relativistic jets by surrounding soft photon fields is a long-standing problem of jet physics. In some cases, the most likely emission site close to the central black hole is ruled out because of the high opacity caused by strong optical and infrared photon sources, such as the broad-line region. Mostly neglected for jet modelling is the absorption of gamma-rays in the starlight photon field of the host galaxy. Analysing the absorption for arbitrary locations and observation angles of the gamma-ray emission site within the host galaxy, we find that the distance to the galaxy centre, the observation angle, and the distribution of starlight in the galaxy are crucial for the amount of absorption. We derive the absorption value for a sample of 20 TeV-detected blazars with a redshift z(r) < 0.2. The absorption value of the gamma-ray emission located in the galaxy centre may be as high as 20 per cent, with an average value of 6 per cent. This is important in order to determine the intrinsic blazar parameters. We see no significant trends in our sample between the degree of absorption and host properties, such as starlight emissivity, galactic size, half-light radius, and redshift. While the uncertainty of the spectral properties of the extragalactic background light exceeds the effect of absorption by stellar light from the host galaxy in distant objects, the latter is a dominant effect in nearby sources. It may also be revealed in a differential comparison of sources with similar redshifts. KW - opacity KW - radiation mechanisms: non-thermal KW - galaxies: active KW - gamma-rays: galaxies Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw3032 SN - 0035-8711 SN - 1365-2966 VL - 465 IS - 3 SP - 3767 EP - 3774 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Anielski, Alexander A1 - Barbosa Pfannes, Eva Katharina A1 - Beta, Carsten T1 - Adaptive microfluidic gradient generator for quantitative chemotaxis experiments JF - Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques N2 - Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell. Published by AIP Publishing. Y1 - 2017 U6 - https://doi.org/10.1063/1.4978535 SN - 0034-6748 SN - 1089-7623 VL - 88 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Koopman, Wouter-Willem Adriaan A1 - Natali, Marco A1 - Donati, Giovanni P. A1 - Muccini, Michele A1 - Toffanin, Stefano T1 - Charge-exciton interaction rate in organic field-effect transistors by means of transient photoluminescence electromodulated spectroscopy JF - ACS photonics N2 - Organic light-emitting transistors (OLETs) offer a huge potential for the design of highly integrated multifunctional optoelectronic systems and of intense nano scale light sources, such as the long-searched-for electrically pumped organic laser. In order to fulfill these promises, the efficiency and brightness of the current state-of-the-art devices have to be increased significantly. The dominating quenching process limiting the external quantum efficiency in OLETs is charge-exciton interaction. A comprehensive understanding of this quenching process is therefore of paramount importance. The present article reports a systematic investigation of charge-exciton interaction in organic transistors employing time resolved photoluminescence electro-modulation (PLEM) spectroscopy on the picosecond time scale. The results show that the injected charges reduce the exciton radiative recombination in two ways: (i) charges may prevent the generation of excitons and (ii) charges activate a further nonradiative channel for the exciton decay. Moreover, the transient PLEM measurements clearly reveal that not only trapped charges, as already reported in literature, but rather the entire injected charge density contributes to the quenching of the exciton population. KW - photoluminescence quenching KW - charge density KW - exciton dynamics KW - organic KW - field-effect transistor KW - light emission KW - optical spectroscopy Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00573 SN - 2330-4022 VL - 4 IS - 2 SP - 282 EP - 291 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Sun, Ning-Chen A1 - de Grijs, Richard A1 - Subramanian, Smitha A1 - Cioni, Maria-Rosa L. A1 - Rubele, Stefano A1 - Bekki, Kenji A1 - Ivanov, Valentin D. A1 - Piatti, Andrés E. A1 - Ripepi, Vincenzo T1 - The VMC Survey. XXII. Hierarchical star formation in the 30 Doradus-N158-N159-N160 star-forming complex JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We study the hierarchical stellar structures in a similar to 1.5 deg(2) area covering the 30. Doradus-N158-N159-N160 starforming complex with the VISTA Survey of. Magellanic Clouds. Based on the young upper main-sequence stars, we find that the surface densities cover a wide range of values, from log(Sigma.pc(2))less than or similar to -2.0 to log(Sigma. pc(2)) greater than or similar to 0.0. Their distributions are highly non-uniform, showing groups that frequently have subgroups inside. The sizes of the stellar groups do not exhibit characteristic values, and range continuously from several parsecs to more than 100. pc; the cumulative size distribution can be well described by a single power law, with the power-law index indicating a projected fractal dimension D-2 = 1.6 +/- 0.3. We suggest that the phenomena revealed here support a scenario of hierarchical star formation. Comparisons with other star-forming regions and galaxies are also discussed. KW - galaxies: clusters: general KW - infrared: stars KW - Magellanic Clouds KW - stars: formation Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/835/2/171 SN - 0004-637X SN - 1538-4357 VL - 835 IS - 2 PB - Institute of Physics Publ. CY - Bristol ER - TY - JOUR A1 - Warren, Donald C. A1 - Ellison, Donald C. A1 - Barkov, Maxim V. A1 - Nagataki, Shigehiro T1 - Nonlinear Particle Acceleration and Thermal Particles in GRB Afterglows JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The standard model for GRB afterglow emission treats the accelerated electron population as a simple power law, N(E) proportional to E-p for p greater than or similar to 2. However, in standard Fermi shock acceleration, a substantial fraction of the swept-up particles do not enter the acceleration process at all. Additionally, if acceleration is efficient, then the nonlinear back-reaction of accelerated particles on the shock structure modifies the shape of the nonthermal tail of the particle spectra. Both of these modifications to the standard synchrotron afterglow impact the luminosity, spectra, and temporal variation of the afterglow. To examine the effects of including thermal particles and nonlinear particle acceleration on afterglow emission, we follow a hydrodynamical model for an afterglow jet and simulate acceleration at numerous points during the evolution. When thermal particles are included, we find that the electron population is at no time well fitted by a single power law, though the highest-energy electrons are; if the acceleration is efficient, then the power-law region is even smaller. Our model predicts hard-soft-hard spectral evolution at X-ray energies, as well as an uncoupled X-ray and optical light curve. Additionally, we show that including emission from thermal particles has drastic effects (increases by factors of 100 and 30, respectively) on the observed flux at optical and GeV energies. This enhancement of GeV emission makes afterglow detections by future gamma-ray observatories, such as CTA, very likely. KW - acceleration of particles KW - cosmic rays KW - gamma-ray burst: general KW - shock waves KW - turbulence Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa56c3 SN - 0004-637X SN - 1538-4357 VL - 835 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Liu, Lin A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Facilitated Diffusion of Transcription Factor Proteins with Anomalous Bulk Diffusion JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - What are the physical laws of the diffusive search of proteins for their specific binding sites on DNA in the presence of the macromolecular crowding in cells? We performed extensive computer simulations to elucidate the protein target search on DNA. The novel feature is the viscoelastic non-Brownian protein bulk diffusion recently observed experimentally. We examine the influence of the protein-DNA binding affinity and the anomalous diffusion exponent on the target search time. In all cases an optimal search time is found. The relative contribution of intermittent three-dimensional bulk diffusion and one-dimensional sliding of proteins along the DNA is quantified. Our results are discussed in the light of recent single molecule tracking experiments, aiming at a better understanding of the influence of anomalous kinetics of proteins on the facilitated diffusion mechanism. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.6b12413 SN - 1520-6106 VL - 121 SP - 1284 EP - 1289 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Almeida, Leonardo A. A1 - Sana, H. A1 - Taylor, W. A1 - Barbá, Rodolfo A1 - Bonanos, Alceste Z. A1 - Crowther, Paul A1 - Damineli, Augusto A1 - de Koter, A. A1 - de Mink, Selma E. A1 - Evans, C. J. A1 - Gieles, Mark A1 - Grin, Nathan J. A1 - Hénault-Brunet, V. A1 - Langer, Norbert A1 - Lennon, D. A1 - Lockwood, Sean A1 - Maíz Apellániz, Jesús A1 - Moffat, A. F. J. A1 - Neijssel, C. A1 - Norman, C. A1 - Ramírez-Agudelo, O. H. A1 - Richardson, N. D. A1 - Schootemeijer, Abel A1 - Shenar, Tomer A1 - Soszyński, Igor A1 - Tramper, Frank A1 - Vink, J. S. T1 - The tarantula massive binary monitoring BT - I. Observational campaign and OB-type spectroscopic binaries JF - Astronomy and astrophysics : an international weekly journal N2 - Context: Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus’s core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2–O7) tend to have shorter orbital periods than later spectral types (O9.2–O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe’s peak of star formation at redshifts z ~ 1 to 2 which are estimated to have Z ~ 0.5 Z⊙. KW - stars: early-type KW - stars: massive KW - binaries: spectroscopic KW - binaries: close Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629844 SN - 1432-0746 VL - 598 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gorobtsov, O. Yu. A1 - Mercurio, G. A1 - Brenner, G. A1 - Lorenz, Ulf A1 - Gerasimova, N. A1 - Kurta, R. P. A1 - Hieke, F. A1 - Skopintsev, P. A1 - Zaluzhnyy, I. A1 - Lazarev, S. A1 - Dzhigaev, D. A1 - Rose, M. A1 - Singer, A. A1 - Wurth, W. A1 - Vartanyants, I. A. T1 - Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry JF - Physical review : A, Atomic, molecular, and optical physics N2 - We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission free-electron laser (FEL) FLASH by means of Hanbury Brown and Twiss interferometry. The experiments were performed at FEL wavelengths of 5.5, 13.4, and 20.8 nm. We determined the second-order intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments a high degree of spatial coherence (above 50%) was obtained. Our analysis performed in spatial and spectral domains provided us with the independent measurements of an average pulse duration of the FEL that were below 60 fs. To explain the complicated behavior of the second-order intensity correlation function we developed an advanced theoretical model that includes the presence of multiple beams and external positional jitter of the FEL pulses. By this analysis we determined that in one of the experiments external positional jitter was about 25% of the beam size. We envision that methods developed in our study will be used widely for analysis and diagnostics of FEL radiation. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevA.95.023843 SN - 2469-9926 SN - 2469-9934 VL - 95 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Godec, Aljaž A1 - Metzler, Ralf T1 - First passage time statistics for two-channel diffusion JF - Journal of physics : A, Mathematical and theoretical N2 - We present rigorous results for the mean first passage time and first passage time statistics for two-channel Markov additive diffusion in a 3-dimensional spherical domain. Inspired by biophysical examples we assume that the particle can only recognise the target in one of the modes, which is shown to effect a non-trivial first passage behaviour. We also address the scenario of intermittent immobilisation. In both cases we prove that despite the perfectly non-recurrent motion of two-channel Markov additive diffusion in 3 dimensions the first passage statistics at long times do not display Poisson-like behaviour if none of the phases has a vanishing diffusion coefficient. This stands in stark contrast to the standard (one-channel) Markov diffusion counterpart. We also discuss the relevance of our results in the context of cellular signalling. KW - first passage time KW - Markov additive processes KW - Fokker-Planck equation KW - random search processes KW - coupled initial boundary value problem KW - cellular signalling KW - asymptotic analysis Y1 - 2017 U6 - https://doi.org/10.1088/1751-8121/aa5204 SN - 1751-8113 SN - 1751-8121 VL - 50 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Goychuk, Igor T1 - Quantum ergodicity breaking in semi-classical electron transfer dynamics JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze (MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp07206b SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 3056 EP - 3066 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kunnus, Kristjan A1 - Josefsson, I. A1 - Schreck, Simon Frederik A1 - Quevedo, W. A1 - Miedema, P. S. A1 - Techert, S. A1 - de Groot, F. M. F. A1 - Föhlisch, Alexander A1 - Odelius, M. A1 - Wernet, Ph. T1 - Quantifying covalent interactions with resonant inelastic soft X-ray scattering BT - case study of Ni2+ aqua complex JF - Chemical physics letters N2 - We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L-3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. We propose that 2p3d RIXS at the Ni L-3-edge can be utilized to quantify covalency in Ni complexes without the use of external references or simulations. KW - Transition-metal ion KW - Aqueous solution KW - Covalent interaction KW - Resonant inelastic X-ray scattering KW - Ligand-field state KW - Charge-transfer state Y1 - 2016 U6 - https://doi.org/10.1016/j.cplett.2016.12.046 SN - 0009-2614 SN - 1873-4448 VL - 669 SP - 196 EP - 201 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Olson, R. A1 - An, Soon-Il A1 - Fan, Y. A1 - Evans, J. P. A1 - Caesar, Levke T1 - North Atlantic observations sharpen meridional overturning projections JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - Atlantic Meridional Overturning Circulation (AMOC) projections are uncertain due to both model errors, as well as internal climate variability. An AMOC slowdown projected by many climate models is likely to have considerable effects on many aspects of global and North Atlantic climate. Previous studies to make probabilistic AMOC projections have broken new ground. However, they do not drift-correct or cross-validate the projections, and do not fully account for internal variability. Furthermore, they consider a limited subset of models, and ignore the skill of models at representing the temporal North Atlantic dynamics. We improve on previous work by applying Bayesian Model Averaging to weight 13 Coupled Model Intercomparison Project phase 5 models by their skill at modeling the AMOC strength, and its temporal dynamics, as approximated by the northern North-Atlantic temperature-based AMOC Index. We make drift-corrected projections accounting for structural model errors, and for the internal variability. Cross-validation experiments give approximately correct empirical coverage probabilities, which validates our method. Our results present more evidence that AMOC likely already started slowing down. While weighting considerably moderates and sharpens our projections, our results are at low end of previously published estimates. We project mean AMOC changes between periods 1960-1999 and 2060-2099 of -4.0 Sv and -6.8 Sv for RCP4.5 and RCP8.5 emissions scenarios respectively. The corresponding average 90% credible intervals for our weighted experiments are [-7.2, -1.2] and [-10.5, -3.7] Sv respectively for the two scenarios. KW - Atlantic Meridional Overturning Circulation KW - Climate modeling KW - Bayesian Model Averaging KW - Model structural error KW - Probabilistic projections Y1 - 2017 U6 - https://doi.org/10.1007/s00382-017-3867-7 SN - 0930-7575 SN - 1432-0894 VL - 50 IS - 11-12 SP - 4171 EP - 4188 PB - Springer CY - New York ER - TY - JOUR A1 - Kayser, Markus A1 - Maturilli, Marion A1 - Graham, Robert M. A1 - Hudson, Stephen R. A1 - Rinke, Annette A1 - Cohen, Lana A1 - Kim, Joo-Hong A1 - Park, Sang-Jong A1 - Moon, Woosok A1 - Granskog, Mats A. T1 - Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015) JF - Journal of geophysical research-atmosheres N2 - The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Alesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Alesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Alesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3 degrees C warmer than the climatology during winter. Plain Language Summary The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and the atmospheric boundary layer characteristics. During winter, we find the strongest impact of synoptic cyclones, which transport warm and moist air into the cold and dry Arctic atmosphere. In spring, incoming solar radiation warms the surface. This leads to very different thermodynamic conditions and higher moisture content, which reduces the contrast between stormy and calm periods. Further, we compare the N-ICE2015 measurements to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. The comparisons highlight the value of the N-ICE2015 observation and show the importance of winter time observations in the Arctic North Atlantic sector. Y1 - 2017 U6 - https://doi.org/10.1002/2016JD026089 SN - 2169-897X SN - 2169-8996 VL - 122 IS - 20 SP - 10855 EP - 10872 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mardoukhi, Ahmad A1 - Mardoukhi, Yousof A1 - Hokka, Mikko A1 - Kuokkala, Veli-Tapani T1 - Effects of heat shock on the dynamic tensile behavior of granitic rocks JF - Rock mechanics and rock engineering N2 - This paper presents a new experimental method for the characterization of the surface damage caused by a heat shock on a Brazilian disk test sample. Prior to mechanical testing with a Hopkinson Split Pressure bar device, the samples were subjected to heat shock by placing a flame torch at a fixed distance from the sample’s surface for periods of 10, 30, and 60 s. The sample surfaces were studied before and after the heat shock using optical microscopy and profilometry, and the images were analyzed to quantify the damage caused by the heat shock. The complexity of the surface crack patterns was quantified using fractal dimension of the crack patterns, which were used to explain the results of the mechanical testing. Even though the heat shock also causes damage below the surface which cannot be quantified from the optical images, the presented surface crack pattern analysis can give a reasonable estimate on the drop rate of the tension strength of the rock. KW - SHPB KW - Rock KW - Granite KW - DIC KW - Dynamic loading KW - Fractal dimension Y1 - 2017 U6 - https://doi.org/10.1007/s00603-017-1168-4 SN - 0723-2632 SN - 1434-453X VL - 50 SP - 1171 EP - 1182 PB - Springer CY - Wien ER - TY - JOUR A1 - Heydari, Esmaeil A1 - Pastoriza-Santos, Isabel A1 - Liz-Marzan, Luis M. A1 - Stumpe, Joachim T1 - Nanoplasmonically-engineered random lasing in organic semiconductor thin films JF - Nanoscale horizons N2 - We demonstrate plasmonically nano-engineered coherent random lasing and stimulated emission enhancement in a hybrid gainmedium of organic semiconductors doped with core-shell plasmonic nanoparticles. The gain medium is composed of a 300 +/- 2 nm thin waveguide of an organic semiconductor, doped with 53 nm gold nanoparticle cores, isolated within silica shells. Upon loading the nanoparticles, the threshold of amplified spontaneous emission is reduced from 1.75 mu J cm(-2) x 10(2) for an undoped gain medium, to 0.35 mu J cm(-2) x 10(2) for a highly concentrated gain medium, and lasing spikes narrower than 0.1 nm are obtained. Most importantly, selection of silica shells with thicknesses of 10, 17 and 21 nm enables engineering of the plasmon-exciton energy coupling and consequently tuning of the laser slope efficiency. With this approach, the slope efficiency is increased by two times by decreasing the silica shell from 21 nm down to 10 nm, due to the enhancement of the localized electric field. Y1 - 2017 U6 - https://doi.org/10.1039/c7nh00054e SN - 2055-6756 SN - 2055-6764 VL - 2 SP - 261 EP - 266 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Gout, Julien A1 - Quade, Markus A1 - Shafi, Kamran A1 - Niven, Robert K. A1 - Abel, Markus T1 - Synchronization control of oscillator networks using symbolic regression JF - Nonlinear Dynamics N2 - Networks of coupled dynamical systems provide a powerful way to model systems with enormously complex dynamics, such as the human brain. Control of synchronization in such networked systems has far-reaching applications in many domains, including engineering and medicine. In this paper, we formulate the synchronization control in dynamical systems as an optimization problem and present a multi-objective genetic programming-based approach to infer optimal control functions that drive the system from a synchronized to a non-synchronized state and vice versa. The genetic programming-based controller allows learning optimal control functions in an interpretable symbolic form. The effectiveness of the proposed approach is demonstrated in controlling synchronization in coupled oscillator systems linked in networks of increasing order complexity, ranging from a simple coupled oscillator system to a hierarchical network of coupled oscillators. The results show that the proposed method can learn highly effective and interpretable control functions for such systems. KW - Dynamical systems KW - Synchronization control KW - Genetic programming Y1 - 2017 U6 - https://doi.org/10.1007/s11071-017-3925-z SN - 0924-090X SN - 1573-269X VL - 91 IS - 2 SP - 1001 EP - 1021 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kegeles, Alexander A1 - Oriti, Daniele T1 - Continuous point symmetries in group field theories JF - Journal of physics : A, Mathematical and theoretical N2 - We discuss the notion of symmetries in non-local field theories characterized by integro-differential equations of motion, from a geometric perspective. We then focus on group field theory (GFT) models of quantum gravity and provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them. KW - group field theory KW - quantum field theory KW - conservation laws KW - continuous symmetries Y1 - 2017 U6 - https://doi.org/10.1088/1751-8121/aa5c14 SN - 1751-8113 SN - 1751-8121 VL - 50 IS - 12 PB - IOP Publishing Ltd CY - Bristol ER -