TY - JOUR A1 - Fischer, Eric Wolfgang A1 - Anders, Janet A1 - Saalfrank, Peter T1 - Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrodinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency omega(c) is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well. Y1 - 2022 U6 - https://doi.org/10.1063/5.0076434 SN - 0021-9606 SN - 1089-7690 VL - 156 IS - 15 PB - American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Schürmann, Robin A1 - Nagel, Alessandro A1 - Juergensen, Sabrina A1 - Pathak, Anisha A1 - Reich, Stephanie A1 - Pacholski, Claudia A1 - Bald, Ilko T1 - Microscopic understanding of reaction rates observed in plasmon chemistry of nanoparticle-ligand systems JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Surface-enhanced Raman scattering (SERS) is an effective and widely used technique to study chemical reactions induced or catalyzed by plasmonic substrates, since the experimental setup allows us to trigger and track the reaction simultaneously and identify the products. However, on substrates with plasmonic hotspots, the total signal mainly originates from these nanoscopic volumes with high reactivity and the information about the overall consumption remains obscure in SERS measurements. This has important implications; for example, the apparent reaction order in SERS measurements does not correlate with the real reaction order, whereas the apparent reaction rates are proportional to the real reaction rates as demonstrated by finite-difference time-domain (FDTD) simulations. We determined the electric field enhancement distribution of a gold nanoparticle (AuNP) monolayer and calculated the SERS intensities in light-driven reactions in an adsorbed self-assembled molecular monolayer on the AuNP surface. Accordingly, even if a high conversion is observed in SERS due to the high reactivity in the hotspots, most of the adsorbed molecules on the AuNP surface remain unreacted. The theoretical findings are compared with the hot-electron-induced dehalogenation of 4-bromothiophenol, indicating a time dependency of the hot-carrier concentration in plasmon-mediated reactions. To fit the kinetics of plasmon-mediated reactions in plasmonic hotspots, fractal-like kinetics are well suited to account for the inhomogeneity of reactive sites on the substrates, whereas also modified standard kinetics model allows equally well fits. The outcomes of this study are on the one hand essential to derive a mechanistic understanding of reactions on plasmonic substrates by SERS measurements and on the other hand to drive plasmonic reactions with high local precision and facilitate the engineering of chemistry on a nanoscale. Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpcc.2c00278 SN - 1932-7447 SN - 1932-7455 VL - 126 IS - 11 SP - 5333 EP - 5342 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Frieß, Fabian A1 - Lendlein, Andreas A1 - Wischke, Christian T1 - Switching microobjects from low to high aspect ratios using a shape-memory effect JF - Soft matter N2 - Spherical particles from shape-memory polymers (SMP) can be stretched to ellipsoids with high aspect ratio (AR) and temporarily stabilized. They can switch back to low AR upon thermal stimulation. Here, the creation of an alternative shape-switching capability of particles from low to high AR is introduced, where a SMP matrix from polyvinyl alcohol (PVA) is used to create crosslinked high AR particles and to program the embedded micrometer-sized particles from a second SMP (oligo(epsilon-caprolactone) micronetworks, MN) with a low switching temperature T-sw. This programming proceeds through shape-recovery of the PVA matrix, from which the MN are harvested by PVA matrix dissolution. The use of a dissolvable SMP matrix may be a general strategy to efficiently create systems with complex moving capabilities. Y1 - 2021 U6 - https://doi.org/10.1039/d1sm00947h SN - 1744-6848 VL - 17 IS - 41 SP - 9326 EP - 9331 PB - Royal Society of Chemistry CY - London ER - TY - JOUR A1 - Wojcik, Michal A1 - Brinkmann, Pia A1 - Zdunek, Rafał A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Merk, Sven A1 - Cieslik, Katarzyna A1 - Mory, David A1 - Antonczak, Arkadiusz T1 - Classification of copper minerals by handheld laser-induced breakdown spectroscopy and nonnegative tensor factorisation JF - Sensors N2 - Laser-induced breakdown spectroscopy (LIBS) analysers are becoming increasingly common for material classification purposes. However, to achieve good classification accuracy, mostly noncompact units are used based on their stability and reproducibility. In addition, computational algorithms that require significant hardware resources are commonly applied. For performing measurement campaigns in hard-to-access environments, such as mining sites, there is a need for compact, portable, or even handheld devices capable of reaching high measurement accuracy. The optics and hardware of small (i.e., handheld) devices are limited by space and power consumption and require a compromise of the achievable spectral quality. As long as the size of such a device is a major constraint, the software is the primary field for improvement. In this study, we propose a novel combination of handheld LIBS with non-negative tensor factorisation to investigate its classification capabilities of copper minerals. The proposed approach is based on the extraction of source spectra for each mineral (with the use of tensor methods) and their labelling based on the percentage contribution within the dataset. These latent spectra are then used in a regression model for validation purposes. The application of such an approach leads to an increase in the classification score by approximately 5% compared to that obtained using commonly used classifiers such as support vector machines, linear discriminant analysis, and the k-nearest neighbours algorithm. KW - LIBS KW - NTF KW - HALS KW - classification KW - copper minerals Y1 - 2020 U6 - https://doi.org/10.3390/s20185152 SN - 1424-8220 VL - 20 IS - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bouakline, Foudhil A1 - Saalfrank, Peter T1 - Seemingly asymmetric atom-localized electronic densities following laser-dissociation of homonuclear diatomics JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - Recent experiments on laser-dissociation of aligned homonuclear diatomic molecules show an asymmetric forward-backward (spatial) electron-localization along the laser polarization axis. Most theoretical models attribute this asymmetry to interference effects between gerade and ungerade vibronic states. Presumably due to alignment, these models neglect molecular rotations and hence infer an asymmetric (post-dissociation) charge distribution over the two identical nuclei. In this paper, we question the equivalence that is made between spatial electron-localization, observed in experiments, and atomic electron-localization, alluded by these theoretical models. We show that (seeming) agreement between these models and experiments is due to an unfortunate omission of nuclear permutation symmetry, i.e., quantum statistics. Enforcement of the latter requires mandatory inclusion of the molecular rotational degree of freedom, even for perfectly aligned molecules. Unlike previous interpretations, we ascribe spatial electron-localization to the laser creation of a rovibronic wavepacket that involves field-free molecular eigenstates with opposite space-inversion symmetry i.e., even and odd parity. Space-inversion symmetry breaking would then lead to an asymmetric distribution of the (space-fixed) electronic density over the forward and backward hemisphere. However, owing to the simultaneous coexistence of two indistinguishable molecular orientational isomers, our analytical and computational results show that the post-dissociation electronic density along a specified space-fixed axis is equally shared between the two identical nuclei-a result that is in perfect accordance with the principle of the indistinguishability of identical particles. Published under an exclusive license by AIP Publishing. Y1 - 2021 U6 - https://doi.org/10.1063/5.0049710 SN - 0021-9606 SN - 1089-7690 VL - 154 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Fischer, Eric W. A1 - Werther, Michael A1 - Bouakline, Foudhil A1 - Saalfrank, Peter T1 - A hierarchical effective mode approach to phonon-driven multilevel vibrational relaxation dynamics at surfaces JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - We discuss an efficient Hierarchical Effective Mode (HEM) representation of a high-dimensional harmonic oscillator bath, which describes phonon-driven vibrational relaxation of an adsorbate-surface system, namely, deuterium adsorbed on Si(100). Starting from the original Hamiltonian of the adsorbate-surface system, the HEM representation is constructed via iterative orthogonal transformations, which are efficiently implemented with Householder matrices. The detailed description of the HEM representation and its construction are given in the second quantization representation. The hierarchical nature of this representation allows access to the exact quantum dynamics of the adsorbate-surface system over finite time intervals, controllable via the truncation order of the hierarchy. To study the convergence properties of the effective mode representation, we solve the time-dependent Schrodinger equation of the truncated system-bath HEM Hamiltonian, with the help of the multilayer extension of the Multiconfigurational Time-Dependent Hartree (ML-MCTDH) method. The results of the HEM representation are compared with those obtained with a quantum-mechanical tier-model. The convergence of the HEM representation with respect to the truncation order of the hierarchy is discussed for different initial conditions of the adsorbate-surface system. The combination of the HEM representation with the ML-MCTDH method provides information on the time evolution of the system (adsorbate) and multiple effective modes of the bath (surface). This permits insight into mechanisms of vibration-phonon coupling of the adsorbate-surface system, as well as inter-mode couplings of the effective bath. Y1 - 2020 U6 - https://doi.org/10.1063/5.0017716 SN - 0021-9606 SN - 1089-7690 VL - 153 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Doering, Ulrike A1 - Grigoriev, Dmitry A1 - Tapio, Kosti A1 - Bald, Ilko A1 - Böker, Alexander T1 - Synthesis of nanostructured protein-mineral-microcapsules by sonication JF - Soft matter N2 - We propose a simple and eco-friendly method for the formation of composite protein-mineral-microcapsules induced by ultrasound treatment. Protein- and nanoparticle-stabilized oil-in-water (O/W) emulsions loaded with different oils are prepared using high-intensity ultrasound. The formation of thin composite mineral proteinaceous shells is realized with various types of nanoparticles, which are pre-modified with Bovine Serum Albumin (BSA) and subsequently characterized by EDX, TGA, zeta potential measurements and Raman spectroscopy. Cryo-SEM and EDX mapping visualizations show the homogeneous distribution of the densely packed nanoparticles in the capsule shell. In contrast to the results reported in our previous paper,(1) the shell of those nanostructured composite microcapsules is not cross-linked by the intermolecular disulfide bonds between BSA molecules. Instead, a Pickering-Emulsion formation takes place because of the amphiphilicity-driven spontaneous attachment of the BSA-modified nanoparticles at the oil/water interface. Using colloidal particles for the formation of the shell of the microcapsules, in our case silica, hydroxyapatite and calcium carbonate nanoparticles, is promising for the creation of new functional materials. The nanoparticulate building blocks of the composite shell with different chemical, physical or morphological properties can contribute to additional, sometimes even multiple, features of the resulting capsules. Microcapsules with shells of densely packed nanoparticles could find interesting applications in pharmaceutical science, cosmetics or in food technology. Y1 - 2022 U6 - https://doi.org/10.1039/d1sm01638e SN - 1744-6848 VL - 18 IS - 13 SP - 2558 EP - 2568 PB - Royal Society of Chemistry CY - London ER - TY - JOUR A1 - Ihlenburg, Ramona A1 - Mai, Tobias A1 - Thünemann, Andreas F. A1 - Baerenwald, Ruth A1 - Saalwächter, Kay A1 - Koetz, Joachim A1 - Taubert, Andreas T1 - Sulfobetaine hydrogels with a complex multilength-scale hierarchical structure JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Defects KW - Hydrogels KW - Nuclear magnetic resonance spectroscopy KW - Scattering KW - X-ray scattering Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 SN - 1520-5207 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Chemura, Sitshengisiwe A1 - Haubitz, Toni A1 - Primus, Philipp A. A1 - Underberg, Martin A1 - Hülser, Tim A1 - Kumke, Michael Uwe T1 - Europium-doped Ceria-Gadolinium mixed oxides BT - PARAFAC analysis and high-resolution emission spectroscopy under cryogenic conditions for structural analysis JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Gadolinium-doped ceria or gadolinium-stabilized ceria (GDC) is an important technical material due to its ability to conduct O2- ions, e.g., used in solid oxide fuel cells operated at intermediate temperature as an electrolyte, diffusion barrier, and electrode component. We have synthesized Ce1-xGdxO2-y:Eu3+ (0 <= x <= 0.4) nanoparticles (11-15 nm) using a scalable spray pyrolysis method, which allows the continuous large-scale technical production of such materials. Introducing Eu3+ ions in small amounts into ceria and GDC as spectroscopic probes can provide detailed information about the atomic structure and local environments and allows us to monitor small structural changes. This study presents a novel approach to structurally elucidate europium-doped Ce1-xGdxO2-y:Eu3+ nanoparticles by way of Eu3+ spectroscopy, processing the spectroscopic data with the multiway decomposition method parallel factor (PARAFAC) analysis. In order to perform the deconvolution of spectra, data sets of excitation wavelength, emission wavelength, and time are required. Room temperature, time-resolved emission spectra recorded at lambda(ex) = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals a high-symmetry species (which can also be probed directly via the CeO2 charge transfer band) and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded under cryogenic conditions after probing the D-5(0)-F-7(0) transition at lambda(ex) = 575-583 nm revealed additional variation in the low-symmetry Eu3+ sites in pure ceria and GDC. The total luminescence spectra of CeO2-y:Eu3+ showed Eu3+ ions located in at least three slightly different coordination environments with the same fundamental symmetry, whereas the overall hypsochromic shift and increased broadening of the D-5(0)-F-7(0) excitation in the GDC samples, as well as the broadened spectra after deconvolution point to less homogeneous environments. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is decreased with increasing Gd3+ and oxygen vacancy concentration. For reference, the Judd-Ofelt parameters of all spectra were calculated. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different contributions to any given spectrum. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c03188 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 24 SP - 4972 EP - 4983 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Granucci, Giovanni A1 - Saalfrank, Peter T1 - Surface hopping dynamics for azobenzene photoisomerization BT - effects of packing density on surfaces, fluorination, and excitation wavelength JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Azobenzenes easily photoswitch in solution, while their photoisomerization at surfaces is often hindered. In recent work, it was demonstrated by nonadiabatic molecular dynamics with trajectory surface hopping [Titov et al., J. Phys. Chem. Lett. 2016, 7, 3591-3596] that the experimentally observed suppression of trans -> cis isomerization yields in azobenzenes in a densely packed SAM (self-assembled monolayer) [Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831-1838] is dominated by steric hindrance. In the present work, we systematically study by ground-state Langevin and nonadiabatic surface hopping dynamics, the effects of decreasing packing density on (i) UV/vis absorption spectra, (ii) trans -> cis isomerization yields, and (iii) excited-state lifetimes of photoexcited azobenzene. Within the quantum mechanics/ molecular mechanics models adopted here, we find that above a packing density of similar to 3 molecules/nm(2), switching yields are strongly reduced, while at smaller packing densities, the "monomer limit" is quickly approached. The UV/vis absorption spectra, on the other hand, depend on packing density over a larger range (down to at least similar to 1 molecule/nm(2)). Trends for excited-state lifetimes are less obvious, but it is found that lifetimes of pi pi* excited states decay monotonically with decreasing coverage. Effects of fluorination of the switches are also discussed for single, free molecules. Fluorination leads to comparatively large trans -> cis yields, in combination with long pi pi* lifetimes. Furthermore, for selected systems, also the effects of n pi* excitation at longer excitation wavelengths have been studied, which is found to enhance trans -> cis yields for free molecules but can lead to an opposite behavior in densely packed SAMs. KW - Computational chemistry KW - Energy KW - Molecules KW - Monomers KW - Oligomers Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c08052 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 48 SP - 26287 EP - 26295 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Fischer, Eric W. A1 - Saalfrank, Peter T1 - Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Recent experiments and theory suggest that ground state properties and reactivity of molecules can be modified when placed inside a nanoscale cavity, giving rise to strong coupling between vibrational modes and the quantized cavity field. This is commonly thought to be caused either by a cavity-distorted Born-Oppenheimer ground state potential or by the formation of light-matter hybrid states, vibrational polaritons. Here, we systematically study the effect of a cavity on ground state properties and infrared spectra of single molecules, considering vibration-cavity coupling strengths from zero up to the vibrational ultrastrong coupling regime. Using single-mode models for Li-H and O-H stretch modes and for the NH3 inversion mode, respectively, a single cavity mode in resonance with vibrational transitions is coupled to position-dependent molecular dipole functions. We address the influence of the cavity mode on polariton ground state energies, equilibrium bond lengths, dissociation energies, activation energies for isomerization, and on vibro-polaritonic infrared spectra. In agreement with earlier work, we observe all mentioned properties being strongly affected by the cavity, but only if the dipole self-energy contribution in the interaction Hamiltonian is neglected. When this term is included, these properties do not depend significantly on the coupling anymore. Vibro-polaritonic infrared spectra, in contrast, are always affected by the cavity mode due to the formation of excited vibrational polaritons. It is argued that the quantized nature of vibrational polaritons is key to not only interpreting molecular spectra in cavities but also understanding the experimentally observed modification of molecular reactivity in cavities. Y1 - 2021 U6 - https://doi.org/10.1063/5.0040853 SN - 0021-9606 SN - 1089-7690 VL - 154 IS - 10 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - von Zander, Robert Edler A1 - Saalfrank, Peter T1 - On the borate-catalyzed electrochemical reduction of phosphine oxide BT - a computational study JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Recently, Nocera and co-workers (J. Am. Chem. Soc. 2018, 140, 13711) demonstrated that triaryl borate Lewis acids facilitate the direct electrochemical reduction of triphenylphosphine oxide (TPPO) to triphenylphosphine (TPP). In the present contribution, we report a quantum chemical study unravelling details of the reaction, which also supports the proposed ECrECi mechanism. Alternative electrochemical routes to TPPO reduction facilitated by other Lewis acids (CH3+), or by photocatalysis at semiconductor surfaces, are also briefly discussed. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c07805 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 49 SP - 10239 EP - 10245 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Fischer, Eric W. A1 - Saalfrank, Peter T1 - A thermofield-based multilayer multiconfigurational time-dependent Hartree approach to non-adiabatic quantum dynamics at finite temperature JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - We introduce a thermofield-based formulation of the multilayer multiconfigurational time-dependent Hartree (MCTDH) method to study finite temperature effects on non-adiabatic quantum dynamics from a non-stochastic, wave function perspective. Our approach is based on the formal equivalence of bosonic many-body theory at zero temperature with a doubled number of degrees of freedom and the thermal quasi-particle representation of bosonic thermofield dynamics (TFD). This equivalence allows for a transfer of bosonic many-body MCTDH as introduced by Wang and Thoss to the finite temperature framework of thermal quasi-particle TFD. As an application, we study temperature effects on the ultrafast internal conversion dynamics in pyrazine. We show that finite temperature effects can be efficiently accounted for in the construction of multilayer expansions of thermofield states in the framework presented herein. Furthermore, we find our results to agree well with existing studies on the pyrazine model based on the pMCTDH method. Y1 - 2021 U6 - https://doi.org/10.1063/5.0064013 SN - 0021-9606 SN - 1089-7690 VL - 155 IS - 13 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Schimka, Selina A1 - Klier, Dennis Tobias A1 - de Guerenu, Anna Lopez A1 - Bastian, Philipp A1 - Lomadze, Nino A1 - Kumke, Michael Uwe A1 - Santer, Svetlana T1 - Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator JF - Journal of physics : Condensed matter N2 - Here we report on photo-isomerization of azobenzene containing surfactants induced during irradiation with near-infrared (NIR) light in the presence of upconversion nanoparticles (UCNPs) acting as mediator. The surfactant molecule consists of charged head group and hydrophobic tail with azobenzene group incorporated in alkyl chain. The azobenzene group can be reversible photo-isomerized between two states: trans- and cis- by irradiation with light of an appropriate wavelength. The trans-cis photo-isomerization is induced by UV light, while cis-trans isomerization proceeds either thermally in darkness, or can be accelerated by exposure to illumination with a longer wavelength typically in a blue/green range. We present the application of lanthanide doped UCNPs to successfully switch azobenzene containing surfactants from cis to trans conformation in bulk solution using NIR light. Using Tm-3(+) or Er-3(+) as activator ions, the UCNPs provide emissions in the spectral range of 450 nm < lambda(em) < 480 nm (for Tm-3(+), three and four photon induced emission) or 525 nm < lambda(em) < 545 nm (for Er-3(+), two photon induced emission), respectively. Especially for UCNPs containing Tm-3(+) a good overlap of the emissions with the absorption bands of the azobenzene is present. Under illumination of the surfactant solution with NIR light (lambda(ex) = 976 nm) in the presence of the Tm-3(+)-doped UCNPs, the relaxation time of cis-trans photo-isomerization was increased by almost 13 times compared to thermally induced isomerization. The influence of thermal heating due to the irradiation using NIR light was shown to be minor for solvents not absorbing in NIR spectral range (e.g. CHCl3) in contrast to water, which shows a distinct absorption in the NIR. KW - upconversion nanoparticles KW - azobenzene containing surfactants KW - kinetic of cis-trans isomerization Y1 - 2019 U6 - https://doi.org/10.1088/1361-648X/aafcfa SN - 0953-8984 SN - 1361-648X VL - 31 IS - 12 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Mayer, Dennis A1 - Picconi, David A1 - Robinson, Matthew S. A1 - Gühr, Markus T1 - Experimental and theoretical gas-phase absorption spectra of thionated uracils JF - Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature N2 - We present a comparative study of the gas-phase UV spectra of uracil and its thionated counterparts (2-thiouracil, 4-thiouracil and 2,4-dithiouracil), closely supported by time-dependent density functional theory calculations to assign the transitions observed. We systematically discuss pure gas-phase spectra for the (thio)uracils in the range of 200-400 nm (similar to 3.2-6.4 eV), and examine the spectra of all four species with a single theoretical approach. We note that specific vibrational modelling is needed to accurately determine the spectra across the examined wavelength range, and systematically model the transitions that appear at wavelengths shorter than 250 nm. Additionally, we find in the cases of 2-thiouracil and 2,4-dithiouracil, that the gas-phase spectra deviate significantly from some previously published solution-phase spectra, especially those collected in basic environments. KW - Thiouracil KW - Uracil KW - UV-VIS Spectroscopy KW - Excited-state calculations; KW - TD-DFT KW - Gas phase Y1 - 2022 U6 - https://doi.org/10.1016/j.chemphys.2022.111500 SN - 0301-0104 VL - 558 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bekir, Marek A1 - Jelken, Joachim A1 - Jung, Se-Hyeong A1 - Pich, Andrij A1 - Pacholski, Claudia A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Dual responsiveness of microgels induced by single light stimulus JF - Applied physics letters N2 - We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented. Y1 - 2021 U6 - https://doi.org/10.1063/5.0036376 SN - 0003-6951 SN - 1077-3118 VL - 118 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Haubitz, Toni A1 - Drobot, Björn A1 - Tsushima, Satoru A1 - Steudtner, Robin A1 - Stumpf, Thorsten A1 - Kumke, Michael Uwe T1 - Quenching mechanism of uranyl(VI) by chloride and bromide in aqueous and non-aqueous solutions JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X-2(center dot-) and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpca.1c02487 SN - 1089-5639 SN - 1520-5215 VL - 125 IS - 20 SP - 4380 EP - 4389 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stefancu, Andrei A1 - Nan, Lin A1 - Zhu, Li A1 - Chis, Vasile A1 - Bald, Ilko A1 - Liu, Min A1 - Leopold, Nicolae A1 - Maier, Stefan A. A1 - Cortes, Emiliano T1 - Controlling plasmonic chemistry pathways through specific ion effects JF - Advanced optical materials N2 - Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry. KW - chemical interface damping KW - Hofmeister effect KW - hydration layer KW - plasmonic chemistry KW - specific ion effects KW - surface-enhanced Raman scattering Y1 - 2022 U6 - https://doi.org/10.1002/adom.202200397 SN - 2195-1071 VL - 10 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Breternitz, Joachim A1 - Schorr, Susan T1 - Symmetry relations in wurtzite nitrides and oxide nitrides and the curious case of Pmc2(1) JF - Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances N2 - Binary III-V nitrides such as AlN, GaN and InN in the wurtzite-type structure have long been considered as potent semiconducting materials because of their optoelectronic properties, amongst others. With rising concerns over the utilization of scarce elements, a replacement of the trivalent cations by others in ternary and multinary nitrides has led to the development of different variants of nitrides and oxide nitrides crystallizing in lower-symmetry variants of wurtzite. This work presents the symmetry relationships between these structural types specific to nitrides and oxide nitrides and updates some prior work on this matter. The non-existence of compounds crystallizing in Pmc2(1), formally the highest subgroup of the wurtzite type fulfilling Pauling's rules for 1:1:2 stoichiometries, has been puzzling scientists for a while; a rationalization is given, from a crystallographic basis, of why this space group is unlikely to be adopted. KW - group-subgroup relationships KW - nitride materials KW - wurtzite type Y1 - 2021 U6 - https://doi.org/10.1107/S2053273320015971 SN - 2053-2733 VL - 77 IS - 3 SP - 208 EP - 216 PB - Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard J. A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy JF - Nature communications N2 - Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-021-27908-y SN - 2041-1723 N1 - Publisher correction: https://doi.org/10.1038/s41467-022-28584-2 VL - 13 IS - 1 PB - Nature Research CY - Berlin ER -