TY - JOUR A1 - Doering, Ulrike A1 - Grigoriev, Dmitry A1 - Tapio, Kosti A1 - Bald, Ilko A1 - Böker, Alexander T1 - Synthesis of nanostructured protein-mineral-microcapsules by sonication JF - Soft matter N2 - We propose a simple and eco-friendly method for the formation of composite protein-mineral-microcapsules induced by ultrasound treatment. Protein- and nanoparticle-stabilized oil-in-water (O/W) emulsions loaded with different oils are prepared using high-intensity ultrasound. The formation of thin composite mineral proteinaceous shells is realized with various types of nanoparticles, which are pre-modified with Bovine Serum Albumin (BSA) and subsequently characterized by EDX, TGA, zeta potential measurements and Raman spectroscopy. Cryo-SEM and EDX mapping visualizations show the homogeneous distribution of the densely packed nanoparticles in the capsule shell. In contrast to the results reported in our previous paper,(1) the shell of those nanostructured composite microcapsules is not cross-linked by the intermolecular disulfide bonds between BSA molecules. Instead, a Pickering-Emulsion formation takes place because of the amphiphilicity-driven spontaneous attachment of the BSA-modified nanoparticles at the oil/water interface. Using colloidal particles for the formation of the shell of the microcapsules, in our case silica, hydroxyapatite and calcium carbonate nanoparticles, is promising for the creation of new functional materials. The nanoparticulate building blocks of the composite shell with different chemical, physical or morphological properties can contribute to additional, sometimes even multiple, features of the resulting capsules. Microcapsules with shells of densely packed nanoparticles could find interesting applications in pharmaceutical science, cosmetics or in food technology. Y1 - 2022 U6 - https://doi.org/10.1039/d1sm01638e SN - 1744-6848 VL - 18 IS - 13 SP - 2558 EP - 2568 PB - Royal Society of Chemistry CY - London ER - TY - JOUR A1 - Ebel, Kenny A1 - Bald, Ilko T1 - Low-energy (5-20 eV) electron-induced single and double strand breaks in well-defined DNA sequences JF - The journal of physical chemistry letters / American Chemical Society N2 - Ionizing radiation is used in cancer radiation therapy to effectively damage the DNA of tumors. The main damage is due to generation of highly reactive secondary species such as low-energy electrons (LEEs). The accurate quantification of DNA radiation damage of well-defined DNA target sequences in terms of absolute cross sections for LEE-induced DNA strand breaks is possible by the DNA origami technique; however, to date, it is possible only for DNA single strands. In the present work DNA double strand breaks in the DNA sequence 5'-d(CAC)(4)/5'd(GTG)(4) are compared with DNA single strand breaks in the oligonucleotides 5'-d(CAC)(4) and 5'-d(GTG)(4) upon irradiation with LEEs in the energy range from 5 to 20 eV. A maximum of strand break cross section was found around 7 and 10 eV independent of the DNA sequence, indicating that dissociative electron attachment is the underlying mechanism of strand breakage and confirming previous studies using plasmid DNA. Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c00684 SN - 1948-7185 VL - 13 IS - 22 SP - 4871 EP - 4876 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Fischer, Eric Wolfgang A1 - Anders, Janet A1 - Saalfrank, Peter T1 - Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrodinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency omega(c) is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well. Y1 - 2022 U6 - https://doi.org/10.1063/5.0076434 SN - 0021-9606 SN - 1089-7690 VL - 156 IS - 15 PB - American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard J. A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy JF - Nature communications N2 - Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-021-27908-y SN - 2041-1723 N1 - Publisher correction: https://doi.org/10.1038/s41467-022-28584-2 VL - 13 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Mayer, Dennis A1 - Picconi, David A1 - Robinson, Matthew S. A1 - Gühr, Markus T1 - Experimental and theoretical gas-phase absorption spectra of thionated uracils JF - Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature N2 - We present a comparative study of the gas-phase UV spectra of uracil and its thionated counterparts (2-thiouracil, 4-thiouracil and 2,4-dithiouracil), closely supported by time-dependent density functional theory calculations to assign the transitions observed. We systematically discuss pure gas-phase spectra for the (thio)uracils in the range of 200-400 nm (similar to 3.2-6.4 eV), and examine the spectra of all four species with a single theoretical approach. We note that specific vibrational modelling is needed to accurately determine the spectra across the examined wavelength range, and systematically model the transitions that appear at wavelengths shorter than 250 nm. Additionally, we find in the cases of 2-thiouracil and 2,4-dithiouracil, that the gas-phase spectra deviate significantly from some previously published solution-phase spectra, especially those collected in basic environments. KW - Thiouracil KW - Uracil KW - UV-VIS Spectroscopy KW - Excited-state calculations; KW - TD-DFT KW - Gas phase Y1 - 2022 U6 - https://doi.org/10.1016/j.chemphys.2022.111500 SN - 0301-0104 VL - 558 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schürmann, Robin A1 - Nagel, Alessandro A1 - Juergensen, Sabrina A1 - Pathak, Anisha A1 - Reich, Stephanie A1 - Pacholski, Claudia A1 - Bald, Ilko T1 - Microscopic understanding of reaction rates observed in plasmon chemistry of nanoparticle-ligand systems JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Surface-enhanced Raman scattering (SERS) is an effective and widely used technique to study chemical reactions induced or catalyzed by plasmonic substrates, since the experimental setup allows us to trigger and track the reaction simultaneously and identify the products. However, on substrates with plasmonic hotspots, the total signal mainly originates from these nanoscopic volumes with high reactivity and the information about the overall consumption remains obscure in SERS measurements. This has important implications; for example, the apparent reaction order in SERS measurements does not correlate with the real reaction order, whereas the apparent reaction rates are proportional to the real reaction rates as demonstrated by finite-difference time-domain (FDTD) simulations. We determined the electric field enhancement distribution of a gold nanoparticle (AuNP) monolayer and calculated the SERS intensities in light-driven reactions in an adsorbed self-assembled molecular monolayer on the AuNP surface. Accordingly, even if a high conversion is observed in SERS due to the high reactivity in the hotspots, most of the adsorbed molecules on the AuNP surface remain unreacted. The theoretical findings are compared with the hot-electron-induced dehalogenation of 4-bromothiophenol, indicating a time dependency of the hot-carrier concentration in plasmon-mediated reactions. To fit the kinetics of plasmon-mediated reactions in plasmonic hotspots, fractal-like kinetics are well suited to account for the inhomogeneity of reactive sites on the substrates, whereas also modified standard kinetics model allows equally well fits. The outcomes of this study are on the one hand essential to derive a mechanistic understanding of reactions on plasmonic substrates by SERS measurements and on the other hand to drive plasmonic reactions with high local precision and facilitate the engineering of chemistry on a nanoscale. Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpcc.2c00278 SN - 1932-7447 SN - 1932-7455 VL - 126 IS - 11 SP - 5333 EP - 5342 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stefancu, Andrei A1 - Nan, Lin A1 - Zhu, Li A1 - Chis, Vasile A1 - Bald, Ilko A1 - Liu, Min A1 - Leopold, Nicolae A1 - Maier, Stefan A. A1 - Cortes, Emiliano T1 - Controlling plasmonic chemistry pathways through specific ion effects JF - Advanced optical materials N2 - Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry. KW - chemical interface damping KW - Hofmeister effect KW - hydration layer KW - plasmonic chemistry KW - specific ion effects KW - surface-enhanced Raman scattering Y1 - 2022 U6 - https://doi.org/10.1002/adom.202200397 SN - 2195-1071 VL - 10 IS - 14 PB - Wiley-VCH CY - Weinheim ER -