TY - JOUR A1 - Vafin, Sergei A1 - Riazantseva, Maria A1 - Pohl, Martin T1 - Coulomb collisions as a candidate for temperature anisotropy constraints in the solar wind JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - Many solar wind observations at 1 au indicate that the proton (as well as electron) temperature anisotropy is limited. The data distribution in the (A(a), beta(a),(parallel to))-plane have a rhombic-shaped form around beta(a),(parallel to) similar to 1. The boundaries of the temperature anisotropy at beta(a),(parallel to) > 1 can be well explained by the threshold conditions of the mirror (whistler) and oblique proton (electron) firehose instabilities in a bi-Maxwellian plasma, whereas the physical mechanism of the similar restriction at beta(a),(parallel to) < 1 is still under debate. One possible option is Coulomb collisions, which we revisit in the current work. We derive the relaxation rate nu(A)(aa) of the temperature anisotropy in a bi-Maxwellian plasma that we then study analytically and by observed proton data from WIND. We found that nu(A)(pp) increases toward small beta(p),(parallel to) < 1. We matched the data distribution in the (A(p), beta(p),(parallel to))-plane with the constant contour nu(A)(pp) = 2.8 . 10(-6) s(-1), corresponding to the minimum value for collisions to play a role. This contour fits rather well the left boundary of the rhombic-shaped data distribution in the (A(p), beta(p),(parallel to))-plane. Thus, Coulomb collisions are an interesting candidate for explaining the limitations of the temperature anisotropy in the solar wind with small beta(a),(parallel to) < 1 at 1 au. KW - instabilities KW - plasmas KW - scattering KW - solar wind KW - Sun: heliosphere Y1 - 2019 U6 - https://doi.org/10.3847/2041-8213/aafb11 SN - 2041-8205 SN - 2041-8213 VL - 871 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Shprits, Yuri Y. A1 - Vasile, Ruggero A1 - Zhelayskaya, Irina S. T1 - Nowcasting and Predicting the Kp Index Using Historical Values and Real-Time Observations JF - Space Weather: The International Journal of Research and Applications N2 - Current algorithms for the real-time prediction of the Kp index use a combination of models empirically driven by solar wind measurements at the L1 Lagrange point and historical values of the index. In this study, we explore the limitations of this approach, examining the forecast for short and long lead times using measurements at L1 and Kp time series as input to artificial neural networks. We explore the relative efficiency of the solar wind-based predictions, predictions based on recurrence, and predictions based on persistence. Our modeling results show that for short-term forecasts of approximately half a day, the addition of the historical values of Kp to the measured solar wind values provides a barely noticeable improvement. For a longer-term forecast of more than 2 days, predictions can be made using recurrence only, while solar wind measurements provide very little improvement for a forecast with long horizon times. We also examine predictions for disturbed and quiet geomagnetic activity conditions. Our results show that the paucity of historical measurements of the solar wind for high Kp results in a lower accuracy of predictions during disturbed conditions. Rebalancing of input data can help tailor the predictions for more disturbed conditions. KW - Kp index KW - geomagnetic activity KW - empirical prediction KW - solar wind KW - forecast KW - AI Y1 - 2019 U6 - https://doi.org/10.1029/2018SW002141 SN - 1542-7390 VL - 17 IS - 8 SP - 1219 EP - 1229 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Vafin, Sergei A1 - Lazar, M. A1 - Fichtner, H. A1 - Schlickeiser, R. A1 - Drillisch, M. T1 - Solar wind temperature anisotropy constraints from streaming instabilities JF - Astronomy and astrophysics : an international weekly journal N2 - Due to the relatively low rate of particle-particle collisions in the solar wind, kinetic instabilities (e.g., the mirror and firehose) play an important role in regulating large deviations from temperature isotropy. These instabilities operate in the high beta(parallel to) > 1 plasmas, and cannot explain the other limits of the temperature anisotropy reported by observations in the low beta beta(parallel to) < 1 regimes. However, the instability conditions are drastically modified in the presence of streaming (or counterstreaming) components, which are ubiquitous in space plasmas. These effects have been analyzed for the solar wind conditions in a large interval of heliospheric distances, 0.3-2.5 AU. It was found that proton counter-streams are much more crucial for plasma stability than electron ones. Moreover, new instability thresholds can potentially explain all observed bounds on the temperature anisotropy, and also the level of differential streaming in the solar wind. KW - solar wind KW - instabilities KW - waves KW - turbulence Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731852 SN - 1432-0746 VL - 613 PB - EDP Sciences CY - Les Ulis ER -