TY - JOUR A1 - Smirnov, Artem A1 - Shprits, Yuri Y. A1 - Allison, Hayley A1 - Aseev, Nikita A1 - Drozdov, Alexander A1 - Kollmann, Peter A1 - Wang, Dedong A1 - Saikin, Anthony T1 - An empirical model of the equatorial electron pitch angle distributions in earth's outer radiation belt JF - Space Weather: the International Journal of Research and Applications N2 - In this study, we present an empirical model of the equatorial electron pitch angle distributions (PADs) in the outer radiation belt based on the full data set collected by the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes in 2012-2019. The PADs are fitted with a combination of the first, third and fifth sine harmonics. The resulting equation resolves all PAD types found in the outer radiation belt (pancake, flat-top, butterfly and cap PADs) and can be analytically integrated to derive omnidirectional flux. We introduce a two-step modeling procedure that for the first time ensures a continuous dependence on L, magnetic local time and activity, parametrized by the solar wind dynamic pressure. We propose two methods to reconstruct equatorial electron flux using the model. The first approach requires two uni-directional flux observations and is applicable to low-PA data. The second method can be used to reconstruct the full equatorial PADs from a single uni- or omnidirectional measurement at off-equatorial latitudes. The model can be used for converting the long-term data sets of electron fluxes to phase space density in terms of adiabatic invariants, for physics-based modeling in the form of boundary conditions, and for data assimilation purposes. KW - pitch angle KW - radiation belt KW - model KW - magnetosphere KW - van allen probes; KW - electrons Y1 - 2022 U6 - https://doi.org/10.1029/2022SW003053 SN - 1542-7390 VL - 20 IS - 9 PB - American Geophysical Union CY - Washington, DC ER - TY - JOUR A1 - Munyaev, Vyacheslav O. A1 - Smirnov, Lev A. A1 - Kostin, Vasily A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New journal of physics : the open-access journal for physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto KW - model KW - noisy systems Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab6f93 SN - 1367-2630 VL - 22 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Omelʹchenko, Oleh E. T1 - Nonstationary coherence-incoherence patterns in nonlocally coupled heterogeneous phase oscillators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We consider a large ring of nonlocally coupled phase oscillators and show that apart from stationary chimera states, this system also supports nonstationary coherence-incoherence patterns (CIPs). For identical oscillators, these CIPs behave as breathing chimera states and are found in a relatively small parameter region only. It turns out that the stability region of these states enlarges dramatically if a certain amount of spatially uniform heterogeneity (e.g., Lorentzian distribution of natural frequencies) is introduced in the system. In this case, nonstationary CIPs can be studied as stable quasiperiodic solutions of a corresponding mean-field equation, formally describing the infinite system limit. Carrying out direct numerical simulations of the mean-field equation, we find different types of nonstationary CIPs with pulsing and/or alternating chimera-like behavior. Moreover, we reveal a complex bifurcation scenario underlying the transformation of these CIPs into each other. These theoretical predictions are confirmed by numerical simulations of the original coupled oscillator system. KW - chimera states KW - synchronization KW - networks KW - Kuramoto KW - populations KW - dynamics KW - bumps KW - model Y1 - 2020 U6 - https://doi.org/10.1063/1.5145259 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Wenz, Leonie A1 - Levermann, Anders A1 - Willner, Sven N. A1 - Otto, Christian A1 - Kuhla, Kilian T1 - Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development JF - PLoS ONE N2 - After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a “no-trade-deal” situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term. KW - model KW - origins KW - chains KW - impact KW - costs Y1 - 2019 VL - 15 IS - 9 PB - PLOS CY - San Francisco ER -