TY - THES A1 - Canil, Laura T1 - Tuning Interfacial Properties in Perovskite Solar Cells through Defined Molecular Assemblies T1 - Anpassung von Grenzflächeneigenschaften von Perowskit-Solarzellen durch den Einsatz von molekularen Schichten N2 - In the frame of a world fighting a dramatic global warming caused by human-related activities, research towards the development of renewable energies plays a crucial role. Solar energy is one of the most important clean energy sources and its role in the satisfaction of the global energy demand is set to increase. In this context, a particular class of materials captured the attention of the scientific community for its attractive properties: halide perovskites. Devices with perovskite as light-absorber saw an impressive development within the last decade, reaching nowadays efficiencies comparable to mature photovoltaic technologies like silicon solar cells. Yet, there are still several roadblocks to overcome before a wide-spread commercialization of this kind of devices is enabled. One of the critical points lies at the interfaces: perovskite solar cells (PSCs) are made of several layers with different chemical and physical features. In order for the device to function properly, these properties have to be well-matched. This dissertation deals with some of the challenges related to interfaces in PSCs, with a focus on the interface between the perovskite material itself and the subsequent charge transport layer. In particular, molecular assemblies with specific properties are deposited on the perovskite surface to functionalize it. The functionalization results in energy level alignment adjustment, interfacial losses reduction, and stability improvement. First, a strategy to tune the perovskite’s energy levels is introduced: self-assembled monolayers of dipolar molecules are used to functionalize the surface, obtaining simultaneously a shift in the vacuum level position and a saturation of the dangling bonds at the surface. A shift in the vacuum level corresponds to an equal change in work function, ionization energy, and electron affinity. The direction of the shift depends on the direction of the collective interfacial dipole. The magnitude of the shift can be tailored by controlling the deposition parameters, such as the concentration of the solution used for the deposition. The shift for different molecules is characterized by several non-invasive techniques, including in particular Kelvin probe. Overall, it is shown that it is possible to shift the perovskite energy levels in both directions by several hundreds of meV. Moreover, interesting insights on the molecules deposition dynamics are revealed. Secondly, the application of this strategy in perovskite solar cells is explored. Devices with different perovskite compositions (“triple cation perovskite” and MAPbBr3) are prepared. The two resulting model systems present different energetic offsets at the perovskite/hole-transport layer interface. Upon tailored perovskite surface functionalization, the devices show a stabilized open circuit voltage (Voc) enhancement of approximately 60 meV on average for devices with MAPbBr3, while the impact is limited on triple-cation solar cells. This suggests that the proposed energy level tuning method is valid, but its effectiveness depends on factors such as the significance of the energetic offset compared to the other losses in the devices. Finally, the above presented method is further developed by incorporating the ability to interact with the perovskite surface directly into a novel hole-transport material (HTM), named PFI. The HTM can anchor to the perovskite halide ions via halogen bonding (XB). Its behaviour is compared to that of another HTM (PF) with same chemical structure and properties, except for the ability of forming XB. The interaction of perovskite with PFI and PF is characterized through UV-Vis, atomic force microscopy and Kelvin probe measurements combined with simulations. Compared to PF, PFI exhibits enhanced resilience against solvent exposure and improved energy level alignment with the perovskite layer. As a consequence, devices comprising PFI show enhanced Voc and operational stability during maximum-power-point tracking, in addition to hysteresis reduction. XB promotes the formation of a high-quality interface by anchoring to the halide ions and forming a stable and ordered interfacial layer, showing to be a particularly interesting candidate for the development of tailored charge transport materials in PSCs. Overall, the results exposed in this dissertation introduce and discuss a versatile tool to functionalize the perovskite surface and tune its energy levels. The application of this method in devices is explored and insights on its challenges and advantages are given. Within this frame, the results shed light on XB as ideal interaction for enhancing stability and efficiency in perovskite-based devices. N2 - Im Kampf gegen den menschengemachten Klimawandel spielt die Forschung und Entwicklung von erneuerbaren Energien eine tragende Rolle. Solarenergie ist eine der wichtigsten grünen Energiequellen und von steigender Bedeutung für die Deckung des globalen Energiebedarfs. In diesem Kontext hat eine bestimme Materialklasse aufgrund ihrer attraktiven Eigenschaften die Aufmerksamkeit der Wissenschaft erregt: Halogenid-Perowskit. Perowskit-Solarzellen haben im letzten Jahrzehnt eine beeindruckende Entwicklung durchgemacht und erreichen heutzutage Effizienzen, die mit weit entwickelten Photovoltaik-Technologien wie Silizium-Solarzellen vergleichbar sind. Jedoch existieren immer noch mehrere Hürden, die einer marktweiten Kommerzialisierung dieser jungen Technologie im Wege stehen. Eines der kritischen Probleme befindet sich an den Grenzflächen. Perowskit-Solarzellen bestehen aus mehreren Schichten mit unterschiedlichen chemischen und physikalischen Eigenschaften. Damit die Solarzelle bestmöglich funktioniert, müssen diese Eigenschaften aufeinander abgestimmt sein. Diese Dissertation beschäftigt sich mit einigen Herausforderungen im Zusammenhang mit Grenzflächen in Perowskit-Solarzellen, dabei liegt der Fokus auf der Grenzfläche zwischen Perowskit-Absorber und der angrenzenden Ladungstransportschicht. Insbesondere werden organische Moleküle mit spezifischen Eigenschaften verwendet um die Oberfläche des Perowskiten zu funktionalisieren. Dadurch wird eine Bandanpassung erreicht, Grenzflächenverluste reduziert und die Stabilität der Solarzellen erhöht. Zunächst wird eine Strategie zum Anpassen der Bandenergien vorgestellt: Selbst-organisierende Monoschichten dipolarer Moleküle werden auf die Perowskit-Oberfläche abgeschieden, um diese zu funktionalisieren. Dadurch wird eine Anpassung des Energie-Levels im Perowskiten und die Sättigung von ungebundenen Elektronenbindungen (engl. dangling bonds) an der Oberfläche erreicht. Die Richtung der Energielevel-Verschiebung hängt von der Richtung des kollektiven Grenzflächen-Dipols ab. Der Betrag der Energielevel-Verschiebung kann über die Depositionsparameter während der Schichtherstellung eingestellt werden. Die Energielevel-Verschiebung bei der Verwendung verschiedener Moleküle wird mit Hilfe verschiedener non-invasiver Charakterisierungsmethoden untersucht, insbesondere mit der Hilfe von Kelvin-Sonde Messungen. Diese Messungen ermöglichen interessante Erkenntnisse über die Dynamik der Deposition der Moleküle. Es ist möglich die Energielevel in beide Richtungen um mehrere hundert meV zu verschieben. Als Zweites wird die Anwendung dieser Stategie in Perowskit-Solarzellen erforscht. Solarzellen mit Perowskit-Absorbern unterschiedlicher Zusammensetzung (“Dreifach-Kationen-Perowskit” und MAPbBr3) werden präpariert; die beiden Modellsysteme besitzen dann unterschiedliche energetische Offsets an der Perowskit-Lochleiter Grenzfläche. Mit einer maßgeschneiderter Funktionalisierung der Perowskit-Oberfläche zeigen die MAPbBr3 Solarzellen eine permanente Verbesserung der offene-Klemmen-Spannung (engl. open circuit voltage, Voc) um durchschnittlich 60 meV, während der Einfluss auf die Solarzellen mit Dreifach-Kationen-Perowskit gering ist. Dies zeigt, dass die vorgestellte Methode zur Bandanpassung funktioniert, aber ihre Effektivität zudem von weiteren Faktoren abhängt: Die Relevanz des energetischen Offsets im Vergleich zu anderen Verlustmechanismen beeinflusst unter anderem die Effektivität der Funktionalisierung. Abschließend wird beschrieben, wie die präsentierte Methode zur Bandanpassung weiterentwickelt wird, indem das Vermögen, mit der Perowskit-Oberfläche zu interagieren, direkt in einen neuartigen Lochleiter („PFI“) integriert wird. Der Lochleiter kann sich über Halogenbindungen an den Perowskiten anlagern. Das Verhalten von PFI wird verglichen mit dem eines anderen Lochleiters („PF“), welcher die fast gleiche chemische Struktur und sehr ähnliche Eigenschaften aufweist, ausgenommen der Fähigkeit eine Halogenbindung zu formen. Die PFI-Perowskit und PF-Perowskit Interaktion wird durch UV-Vis Spektroskopie, Rasterkraftmikroskopie und Kelvin-Sonde Messungen, kombiniert mit Simulationen, charakterisiert. Beim direkten Vergleich von PFI und PF zeigt sich die Bildung der Halogenbindung in einer bei PFI verbesserten Widerstandskraft gegen Lösungsmittel und Bandanpassung zum Perowskiten. Beim Folgerichtig zeigen Solarzellen mit PFI zusätzlich zu einer verringerten Hysterese einen höheren Voc und eine erhöhte Stabilität während des Betriebs unter Maximum-Power-Point Tracking Zusammenfassend stellt diese Dissertation somit ein vielseitiges Werkzeug zur Funktionalisierung von Perowskit-Oberflächen und der dadurch erreichten Bandanpassung vor. Die Anwendung dieses Werkzeugs an Solarzellen wird erprobt und Einsichten in seine Vorteile und Nachteile erlangt. Die Halogenbindung wird als spezifische Interaktion identifiziert, die sich ideal zur Steigerung von Effizienz und Stabilität von Perowskit-basierten optoelektronischen Bauteilen erweisen könnte. KW - photovoltaic KW - perovskite solar cells KW - interfaces KW - energy levels KW - halogen bonding KW - Grenzflächen KW - Perowskit Solarzellen KW - Photovoltaik KW - Bandenenergien KW - Halogenbindung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-546333 ER - TY - THES A1 - Petsiuk, Andrei T1 - Investigation of charge carrier transport in metal halide perovskites by THz Spectroscopy T1 - Untersuchung des Ladungstransportes in den Metal Halogenid Perowskiten durch THz Spektroskopie N2 - Halide perovskites are a class of novel photovoltaic materials that have recently attracted much attention in the photovoltaics research community due to their highly promising optoelectronic properties, including large absorption coefficients and long carrier lifetimes. The charge carrier mobility of halide perovskites is investigated in this thesis by THz spectroscopy, which is a contact-free technique that yields the intra-grain sum mobility of electrons and holes in a thin film. The polycrystalline halide perovskite thin films, provided from Potsdam University, show moderate mobilities in the range from 21.5 to 33.5 cm2V-1s-1. It is shown in this work that the room temperature mobility is limited by charge carrier scattering at polar optical phonons. The mobility at low temperature is likely to be limited by scattering at charged and neutral impurities at impurity concentration N=1017-1018 cm-3. Furthermore, it is shown that exciton formation may decrease the mobility at low temperatures. Scattering at acoustic phonons can be neglected at both low and room temperatures. The analysis of mobility spectra over a broad range of temperatures for perovskites with various cation compounds shows that cations have a minor impact on charge carrier mobility. The low-dimensional thin films of quasi-2D perovskite with different numbers of [PbI6]4−sheets (n=2-4) alternating with long organic spacer molecules were provided by S. Zhang from Potsdam University. They exhibit mobilities in the range from 3.7 to 8 cm2V-1s-1. A clear decrease of mobility is observed with decrease in number of metal-halide sheets n, which likely arises from charge carrier confinement within metal-halide layers. Modelling the measured THz mobility with the modified Drude-Smith model yields localization length from 0.9 to 3.7 nm, which agrees well on the thicknesses of the metal-halide layers. Additionally, the mobilities are found to be dependent on the orientation of the layers. The charge carrier dynamics is also dependent on the number of metal-halide sheets n. For the thin films with n =3-4 the dynamics is similar to the 3D MHPs. However, the thin film with n = 2 shows clearly different dynamics, where the signs of exciton formation are observed within 390 fs timeframe after photoexcitation. Also, the charge carrier dynamics of CsPbI3 perovskite nanocrystals was investigated, in particular the effect of post treatments on the charge carrier transport. N2 - Metall-Halogenid Perowskite sind eine Klasse von photovoltaischen Materialien, welche in letzter Zeit sehr viel Aufmerksamkeit von Forschern bekommen haben. Der Grund dafür liegt in ihren vielversprechenden optoelektronischen Eigenschaften, wie beispielsweise hohe Absorptionskoeffizienten, lange Lebenszeiten der Ladungsträger und moderate Beweglichkeiten. Die Beweglichkeit der Ladungsträger und deren Kinetik wurde in dieser Dissertation mit Hilfe von Teraherzspektroskopie in verschiedenen Metall-Halogenide Perowskiten untersucht. Die polykristallinen Halogenide Perowskit-Dünnschichten, bereitgestellt von Dr. M. Stolterfoht von der Universität Potsdam, haben bei Raumtemperatur moderate Ladungsträgerbeweglichkeiten in einem Bereich von 21.5 bis 33.5 cm²V-1s-1. Die Analyse dieser Beweglichkeiten in Abhängigkeit der Temperatur zeigt, dass die Beweglichkeit bei Raumtemperatur durch die Interaktion mit polaren optischen Phononen limitiert wird. Bei niedrigeren Temperaturen sind die Beweglichkeiten durch Streuung an geladenen und neutralen Störstellen limitiert, wobei die Störstellenkonzentration bei ca. N =1017-1018 cm-3 liegt. Weiterhin wird es gezeigt, dass die Reduktion der Anzahl beweglicher Ladungsträger durch Exzitonenbildung ebenfalls bei niedrigen Temperaturen berücksichtigt werden muss. Streuung an akustischen Phononen kann sowohl bei Raum- als auch bei niedrigen Temperaturen vernachlässigt werden. Die Analyse der Beweglichkeitsspektren von Perowskiten mit unterschiedlichen Kationen und bei verschiedenen Temperaturspannen zeigt, dass diese Kationen einen sehr geringen Einfluss auf die Ladungsträgerbeweglichkeit haben. Niederdimensionale Perowskit-Dünnschichten aus alternierenden quasi-2D [PbI6]4− Schichten n (n=3-4) und organischen Trennschichten wurde von S. Zhang von der Universität Potsdam bereitgestellt. Diese zeigen Beweglichkeiten zwischen 3.7 und 8 cm²V-1s-1. Der signifikante Rückgang der beobachteten Beweglichkeit lässt sich auf die Anzahl der Metall-Halogeniden Schichten n zurückführen, in welcher die Ladungsträger räumlich eingeschränkt sind. Die Lokalisationslänge reicht von 0.9 bis 3.7 nm und ist vergleichbar mit der Dicke der einzelnen quasi-2D-Schichten. Ebenfalls ist die Beweglichkeit abhängig von der Schichtenorientierung. Zusätzlich ist die Ladungsträgerdynamik abhängig von der Anzahl der Metall-Halogeniden [PbI6]4−Schichten n. Dicke quasi-2D-Schichten (n = 3-4) zeigen ähnliche Dynamik wie drei dimensionale Perowskite, wogegen die dünnen quasi-2D-Schichten (n = 2) schnelle Exzitonbildung innerhalb 390 fs nach der Ladungsträgeranregung zeigen. Des weiteren wurde die Ladungsträgerdynamik von CsPbI3 Perovskite-Nanokristallen untersucht, insbesondere die Auswirkung von Ligandenaustausch und Temperierung auf die Ladungsträgerbeweglichkeit. KW - Photovoltaics KW - THz Spectroscopy KW - Metal Halide Perovskites KW - Metal Halogenid Perowskiten KW - Photovoltaik KW - THz Spektroskopie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515441 ER -