TY - JOUR A1 - Hörmann, Ulrich A1 - Zeiske, Stefan A1 - Park, Soohyung A1 - Schultz, Thorsten A1 - Kickhoefel, Sebastian A1 - Scherf, Ullrich A1 - Blumstengel, Sylke A1 - Koch, Norbert A1 - Neher, Dieter T1 - Direct observation of state-filling at hybrid tin oxide/organic interfaces JF - Applied physics letters N2 - Electroluminescence (EL) spectra of hybrid charge transfer states at metal oxide/organic type-II heterojunctions exhibit bias-induced spectral shifts. The reasons for this phenomenon have been discussed controversially and arguments for either electric field-induced effects or the filling of trap states at the oxide surface have been put forward. Here, we combine the results of EL and photovoltaic measurements to eliminate the unavoidable effect of the series resistance of inorganic and organic components on the total voltage drop across the hybrid device. For SnOx combined with the conjugated polymer [ladder type poly-(para-phenylene)], we find a one-to-one correspondence between the blue-shift of the EL peak and the increase of the quasi-Fermi level splitting at the hybrid heterojunction, which we unambiguously assign to state filling. Our data are resembled best by a model considering the combination of an exponential density of states with a doped semiconductor. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5082704 SN - 0003-6951 SN - 1077-3118 VL - 114 IS - 18 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Schubert, Marcel A1 - Frisch, Johannes A1 - Allard, Sybille A1 - Preis, Eduard A1 - Scherf, Ullrich A1 - Koch, Norbert A1 - Neher, Dieter T1 - Tuning side chain and main chain order in a prototypical donor-acceptor copolymer BT - implications for optical, electronic, and photovoltaic characteristics JF - Elementary Processes in Organic Photovoltaics N2 - The recent development of donor–acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure–property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties. KW - Aggregate states KW - All-polymer heterojunctions KW - Alternating copolymers KW - Ambipolar charge transport KW - Ambipolar materials KW - Backbone modifications KW - Bilayer solar cells KW - Charge separation KW - Conformational disorder KW - Crystalline phases KW - Donor-acceptor copolymers KW - Electron traps KW - Energetic disorder KW - Energy-level alignment KW - Fermi-level alignment KW - Fermi-level pinning KW - Interface dipole KW - Interlayer KW - Intrachain order KW - Intragap states KW - Microscopic morphology KW - Mobility imbalance KW - Mobility relaxation KW - Monte Carlo simulation KW - Multiple trapping model KW - Nonradiative recombination KW - OFET KW - Open-circuit voltage KW - Optoelectronic properties KW - Partially alternating copolymers KW - Photo-CELIV KW - Photocurrent KW - Photovoltaic gap KW - Polymer intermixing KW - Recombination losses KW - Spectral diffusion KW - Statistical copolymers KW - Stille-type cross-coupling KW - Structure-property relationships KW - Time-dependent mobility KW - Time-of-flight (TOF) KW - Transient photocurrent KW - Ultraviolet photoelectron spectroscopy KW - Vacuum-level alignment KW - X-ray photoelectron spectroscopy Y1 - 2016 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_10 SN - 0065-3195 VL - 272 SP - 243 EP - 265 PB - Springer CY - Berlin ER - TY - JOUR A1 - Yang, Xiao Hui A1 - Jaiser, Frank A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Galbrecht, Frank A1 - Scherf, Ullrich T1 - Efficient polymer electrophosphoreseent devices with interfacial layers JF - Advanced functional materials N2 - It is shown that several polymers can form insoluble interfacial layers on a poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer after annealing of the double-layer structure. The thickness of the interlayer is dependent on the characteristics of the underlying PEDOT.PSS and the molecular weight of the polymers. It is further shown that the electronic structures of the interlayer polymers have a significant effect on the properties of red-light-emitting polymer-based electrophosphorescent devices. Upon increasing the highest occupied molecular orbital and lowest unoccupied molecular orbital positions, a significant increase in current density and device efficiency is observed. This is attributed to efficient blocking of electrons in combination with direct injection of holes from the interlayer to the phosphorescent dye. Upon proper choice of the interlayer polymer, efficient red, polymer-based electrophosphorescent devices with a peak luminance efficiency of 5.5 cd A(-1) (external quantum efficiency = 6 %) and a maximum power-conversion efficiency of 5 Im W-1 can be realized. Y1 - 2006 U6 - https://doi.org/10.1002/adfm.200500834 SN - 1616-301X SN - 1616-3028 VL - 16 IS - 16 SP - 2156 EP - 2162 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sini, Gjergji A1 - Schubert, Marcel A1 - Risko, Chad A1 - Roland, Steffen A1 - Lee, Olivia P. A1 - Chen, Zhihua A1 - Richter, Thomas V. A1 - Dolfen, Daniel A1 - Coropceanu, Veaceslav A1 - Ludwigs, Sabine A1 - Scherf, Ullrich A1 - Facchetti, Antonio A1 - Frechet, Jean M. J. A1 - Neher, Dieter T1 - On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface JF - Advanced energy materials N2 - Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules. KW - donor-acceptor interfaces KW - energy gradients KW - geometrical deformations KW - nonfullerene acceptors KW - organic photovoltaics KW - photocurrent generation KW - polymer solar cells Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702232 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 12 PB - Wiley-VCH CY - Weinheim ER -