TY - THES A1 - Müller, Melanie J. I. T1 - Bidirectional transport by molecular motors T1 - Bidirektionaler Transport durch molekulare Motoren N2 - In biological cells, the long-range intracellular traffic is powered by molecular motors which transport various cargos along microtubule filaments. The microtubules possess an intrinsic direction, having a 'plus' and a 'minus' end. Some molecular motors such as cytoplasmic dynein walk to the minus end, while others such as conventional kinesin walk to the plus end. Cells typically have an isopolar microtubule network. This is most pronounced in neuronal axons or fungal hyphae. In these long and thin tubular protrusions, the microtubules are arranged parallel to the tube axis with the minus ends pointing to the cell body and the plus ends pointing to the tip. In such a tubular compartment, transport by only one motor type leads to 'motor traffic jams'. Kinesin-driven cargos accumulate at the tip, while dynein-driven cargos accumulate near the cell body. We identify the relevant length scales and characterize the jamming behaviour in these tube geometries by using both Monte Carlo simulations and analytical calculations. A possible solution to this jamming problem is to transport cargos with a team of plus and a team of minus motors simultaneously, so that they can travel bidirectionally, as observed in cells. The presumably simplest mechanism for such bidirectional transport is provided by a 'tug-of-war' between the two motor teams which is governed by mechanical motor interactions only. We develop a stochastic tug-of-war model and study it with numerical and analytical calculations. We find a surprisingly complex cooperative motility behaviour. We compare our results to the available experimental data, which we reproduce qualitatively and quantitatively. N2 - In biologischen Zellen transportieren molekulare Motoren verschiedenste Frachtteilchen entlang von Mikrotubuli-Filamenten. Die Mikrotubuli-Filamente besitzen eine intrinsische Richtung: sie haben ein "Plus-" und ein "Minus-"Ende. Einige molekulare Motoren wie Dynein laufen zum Minus-Ende, während andere wie Kinesin zum Plus-Ende laufen. Zellen haben typischerweise ein isopolares Mikrotubuli-Netzwerk. Dies ist besonders ausgeprägt in neuronalen Axonen oder Pilz-Hyphen. In diesen langen röhrenförmigen Ausstülpungen liegen die Mikrotubuli parallel zur Achse mit dem Minus-Ende zum Zellkörper und dem Plus-Ende zur Zellspitze gerichtet. In einer solchen Röhre führt Transport durch nur einen Motor-Typ zu "Motor-Staus". Kinesin-getriebene Frachten akkumulieren an der Spitze, während Dynein-getriebene Frachten am Zellkörper akkumulieren. Wir identifizieren die relevanten Längenskalen und charakterisieren das Stauverhalten in diesen Röhrengeometrien mit Hilfe von Monte-Carlo-Simulationen und analytischen Rechnungen. Eine mögliche Lösung für das Stauproblem ist der Transport mit einem Team von Plus- und einem Team von Minus-Motoren gleichzeitig, so dass die Fracht sich in beide Richtungen bewegen kann. Dies wird in Zellen tatsächlich beobachtet. Der einfachste Mechanismus für solchen bidirektionalen Transport ist ein "Tauziehen" zwischen den beiden Motor-Teams, das nur mit mechanischer Interaktion funktioniert. Wir entwickeln ein stochastisches Tauzieh-Modell, das wir mit numerischen und analytischen Rechnungen untersuchen. Es ergibt sich ein erstaunlich komplexes Motilitätsverhalten. Wir vergleichen unsere Resultate mit den vorhandenen experimentellen Daten, die wir qualitativ und quantitativ reproduzieren. KW - molekulare Motoren KW - bidirektionaler intrazellulärer Transport KW - Tauziehen KW - stochastische Prozesse KW - kooperative Phänomene KW - molecular motors KW - bidirectional intracellular transport KW - tug-of-war KW - stochastic processes KW - cooperative phenomena Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18715 ER - TY - THES A1 - Zaikin, Alexei T1 - Noise-induced transitions and resonant effects in nonlinear systems T1 - - N2 - Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich erwiesen. Außerordentlich interessant aus dieser Sicht sind auch Reizleitungsprozesse: Reize werden nur weitergleitet, wenn die strukturlosen Signale der Neuronen mit ausreichend starker Intensität erfolgen, also ein Schwellwert überschritten ist. Der Physiker Dr. Alexei Zaikin von der Universität Potsdam beschäftigt sich mit sogenannten rauschinduzierten Phänomenen aus theorischer Sicht. Sein Forschungsgebiet sind Prozesse, bei denen Rauschen mehrfach das Systemverhalten beeinflusst: ist es ausreichend gross, d.h. größer als ein kritischer Wert, wird eine reguläre Struktur gebildet, die durch das immernoch vorhandene Rauschen mit der Struktur des Nachbarsystems synchronisiert. Um ein solches System mit kritischem Wert zu erhalten, bedarf es einer weiteren Rauschquelle. Herr Zaikin analysierte noch weitere Beispiele solcher doppelt stochastischen Effekte. Die Ausarbeitung derartiger theoretischer Grundlagen ist wichtig, da diese Prozesse in der Neurophysik, in technischen Kommunikationssystemen und in den Lebenswissenschaften eine Rolle spielen. N2 - Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. T2 - Noise-induced transitions and resonant effects in nonlinear systems KW - Rauschinduzierte Phänomene KW - Stochastische Prozesse KW - Rauschen KW - Stochastische Resonanz KW - Noise-induced phenomena KW - stochastic processes KW - noise KW - stochastic resonance Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000761 ER - TY - THES A1 - Weikl, Thomas R. T1 - Transition states and loop-closure principles in protein folding T1 - Übergangszustände und Schleifenschließungsprinzipien bei der Proteinfaltung N2 - Proteins are chain molecules built from amino acids. The precise sequence of the 20 different types of amino acids in a protein chain defines into which structure a protein folds, and the three-dimensional structure in turn specifies the biological function of the protein. The reliable folding of proteins is a prerequisite for their robust function. Misfolding can lead to protein aggregates that cause severe diseases, such as Alzheimer's, Parkinson's, or the variant Creutzfeldt-Jakob disease. Small single-domain proteins often fold without experimentally detectable metastable intermediate states. The folding dynamics of these proteins is thought to be governed by a single transition-state barrier between the unfolded and the folded state. The transition state is highly instable and cannot be observed directly. However, mutations in which a single amino acid of the protein is substituted by another one can provide indirect access. The mutations slightly change the transition-state barrier and, thus, the folding and unfolding times of the protein. The central question is how to reconstruct the transition state from the observed changes in folding times. In this habilitation thesis, a novel method to extract structural information on transition states from mutational data is presented. The method is based on (i) the cooperativity of structural elements such as alpha-helices and beta-hairpins, and (ii) on splitting up mutation-induced free-energy changes into components for these elements. By fitting few parameters, the method reveals the degree of structure formation of alpha-helices and beta-hairpins in the transition state. In addition, it is shown in this thesis that the folding routes of small single-domain proteins are dominated by loop-closure dependencies between the structural elements. N2 - Proteine sind Kettenmoleküle, die aus einzelnen Aminosäuren aufgebaut sind. Die genaue Sequenz der 20 verschiedenartigen Aminosäuren innerhalb der Proteinkette bestimmt dabei, in welche spezielle Struktur sich ein Protein faltet. Die dreidimensionale Struktur bestimmt wiederum die Funktion der Proteine. Doch nur korrekt gefaltet kann ein Protein seine Funktion erfüllen. Fehler bei der Faltung können zu Proteinaggregaten führen, die schwere Krankheiten wie Alzheimer, Parkinson oder das Creutzfeldt-Jakob-Syndrom hervorrufen. Viele kleine Proteine falten ohne experimentell beobachtbare metastabile Zwischenzustände. Entscheidend für die Faltungsdynamik dieser Proteine ist der Übergangszustand zwischen dem ungefalteten und gefalteten Zustand. Der Übergangszustand ist instabil und kann nicht direkt beobachtet werden. Einen indirekten Zugang ermöglichen jedoch Mutationen eines Proteins, bei denen einzelne Aminosäuren ausgetauscht werden. Die Mutationen verändern geringfügig die Übergangszustandsbarriere, und damit die Faltungs- und Entfaltungszeiten des Proteins. Die zentrale Frage ist, wie sich der Übergangszustand aus den beobachteten Änderungen der Faltungszeit rekonstruieren lässt. In dieser Habilitationsschrift wird eine neuartige Methode zur Rekonstruktion von Übergangszuständen aus Mutationsdaten vorgestellt. Die Methode beruht auf (i) der Kooperativität von Strukturelementen wie alpha-Helizes und beta-Haarnadeln, und (ii) der Aufspaltung von mutationsinduzierten Veränderungen der freien Energie in Komponenten für diese Strukturelemente. Die Modellierung der experimentellen Daten verrät, in welchem Grad alpha-Helizes and beta-Haarnadeln im Übergangszustand strukturiert sind. Zudem wird in dieser Habilitationsschrift gezeigt, dass die Faltungswege vieler kleiner Proteine durch Schleifenschließungsbeziehungen zwischen den Strukturelementen dominiert werden. KW - Proteinfaltung KW - Faltungsdynamik KW - Übergangszustand KW - Stochastische Prozesse KW - Schleifenschließung KW - protein folding KW - folding dynamics KW - transition state KW - stochastic processes KW - loop closure Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26975 ER - TY - THES A1 - Berger, Florian T1 - Different modes of cooperative transport by molecular motors T1 - Verschiedene Arten kooperativen Transportes mittels molekularer Motoren N2 - Cargo transport by molecular motors is ubiquitous in all eukaryotic cells and is typically driven cooperatively by several molecular motors, which may belong to one or several motor species like kinesin, dynein or myosin. These motor proteins transport cargos such as RNAs, protein complexes or organelles along filaments, from which they unbind after a finite run length. Understanding how these motors interact and how their movements are coordinated and regulated is a central and challenging problem in studies of intracellular transport. In this thesis, we describe a general theoretical framework for the analysis of such transport processes, which enables us to explain the behavior of intracellular cargos based on the transport properties of individual motors and their interactions. Motivated by recent in vitro experiments, we address two different modes of transport: unidirectional transport by two identical motors and cooperative transport by actively walking and passively diffusing motors. The case of cargo transport by two identical motors involves an elastic coupling between the motors that can reduce the motors’ velocity and/or the binding time to the filament. We show that this elastic coupling leads, in general, to four distinct transport regimes. In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted to attain a reduced velocity regime. All of these regimes, which we derive both by analytical calculations and by general time scale arguments, can be explored experimentally by varying the elastic coupling strength. In addition, using the time scale arguments, we explain why previous studies came to different conclusions about the effect and relevance of motor-motor interference. In this way, our theory provides a general and unifying framework for understanding the dynamical behavior of two elastically coupled molecular motors. The second mode of transport studied in this thesis is cargo transport by actively pulling and passively diffusing motors. Although these passive motors do not participate in active transport, they strongly enhance the overall cargo run length. When an active motor unbinds, the cargo is still tethered to the filament by the passive motors, giving the unbound motor the chance to rebind and continue its active walk. We develop a stochastic description for such cooperative behavior and explicitly derive the enhanced run length for a cargo transported by one actively pulling and one passively diffusing motor. We generalize our description to the case of several pulling and diffusing motors and find an exponential increase of the run length with the number of involved motors. N2 - Lastentransport mittels Motorproteinen ist ein grundlegender Mechanismus aller eukaryotischen Zellen und wird üblicherweise von mehreren Motoren kooperativ durchgeführt, die zu einer oder zu verschiedenen Motorarten wie Kinesin, Dynein oder Myosin gehören. Diese Motoren befördern Lasten wie zum Beispiel RNAs, Proteinkomplexe oder Organellen entlang Filamenten, von denen sie nach einer endlichen zurückgelegten Strecke abbinden. Es ist ein zentrales und herausforderndes Problem zu verstehen, wie diese Motoren wechselwirken und wie ihre Bewegungen koordiniert und reguliert werden. In der vorliegenden Arbeit wird eine allgemeine theoretische Herangehensweise zur Untersuchung solcher Transportprozesse beschrieben, die es uns ermöglicht, das Verhalten von intrazellularem Transport, ausgehend von den Transporteigenschaften einzelner Motoren und ihren Wechselwirkungen, zu verstehen. Wir befassen uns mit zwei Arten kooperativen Transports, die auch kürzlich in verschiedenen in vitro-Experimenten untersucht wurden: (i) gleichgerichteter Transport mit zwei identischen Motorproteinen und (ii) kooperativer Transport mit aktiv schreitenden und passiv diffundierenden Motoren. Beim Lastentransport mit zwei identischen Motoren sind die Motoren elastisch gekoppelt, was eine Verminderung ihrer Geschwindigkeit und/oder ihrer Bindezeit am Filament hervorrufen kann. Wir zeigen, dass solch eine elastische Kopplung im Allgemeinen zu vier verschiedenen Transportcharakteristiken führt. Zusätzlich zu einer schwachen Kopplung, können bei Kinesinen und Dyneinen eine starke Kopplung und ein verstärktes Abbinden auftreten, wohingegen bei Myosin Motoren eine verminderte Geschwindigkeit vorhergesagt wird. All diese Transportcharakteristiken, die wir mit Hilfe analytischer Rechnungen und Zeitskalenargumenten herleiten, können durch Änderung der elastischen Kopplung experimentell untersucht werden. Zusätzlich erklären wir anhand der Zeitskalenargumente, warum frühere Untersuchungen zu unterschiedlichen Erkenntnissen über die Auswirkung und die Wichtigkeit der gegenseitigen Beeinflussung der Motoren gelangt sind. Auf diese Art und Weise liefert unsere Theorie eine allgemeine und vereinheitlichende Beschreibung des dynamischen Verhaltens von zwei elastisch gekoppelten Motorproteinen. Die zweite Art von Transport, die in dieser Arbeit untersucht wird ist der Lastentransport durch aktiv ziehende und passiv diffundierende Motoren. Obwohl die passiven Motoren nicht zum aktiven Transport beitragen, verlängern sie stark die zurückgelegte Strecke auf dem Filament. Denn wenn ein aktiver Motor abbindet, wird das Lastteilchen immer noch am Filament durch den passiven Motor festgehalten, was dem abgebundenen Motor die Möglichkeit gibt, wieder an das Filament anzubinden und den aktiven Transport fortzusetzen. Für dieses kooperative Verhalten entwickeln wir eine stochastische Beschreibung und leiten explizit die verlängerte Transportstrecke für einen aktiv ziehenden und einen passiv diffundierenden Motor her. Wir verallgemeinern unsere Beschreibung für den Fall von mehreren ziehenden und diffundierenden Motoren und finden ein exponentielles Anwachsen der zurückgelegten Strecke in Abhängigkeit von der Anzahl der beteiligten Motoren. KW - molekulare Motoren KW - kooperativer Transport KW - intrazellulärer Transport KW - elastische Kopplung KW - stochastische Prozesse KW - molecular motors KW - cooperative transport KW - intracellular transport KW - elastic coupling KW - stochastic processes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60319 ER - TY - THES A1 - Ullner, Ekkehard T1 - Noise-induced phenomena of signal transmission in excitable neural models N2 - Meine Dissertation behandelt verschiedene neue rauschinduzierte Phänomene in anregbaren Neuronenmodellen, insbesondere solche mit FitzHugh-Nagumo Dynamik. Ich beschreibe das Auftreten von vibronischer Resonanz in anregbaren Systemen. Sowohl in einer anregbaren elektronischen Schaltung als auch im FitzHugh-Nagumo Modell zeige ich, daß eine optimale Amplitude einer hochfrequenten externen Kraft die Signalantwort bezüglich eines niederfrequenten Signals verbessert. Weiterhin wird der Einfluß von additivem Rauschen auf das Zusammenwirken von stochastischer und vibronischer Resonanz untersucht. Weiterhin untersuche ich Systeme, die sowohl oszillierende als auch anregbare Eigenschaften beinhalten und dadurch zwei interne Frequenzen aufweisen. Ich zeige, daß in solchen Systemen der Effekt der stochastischen Resonanz deutlich erhöht werden kann, wenn eine zusätzliche hochfrequente Kraft in Resonanz mit den kleinen Oszillationen unterhalb der Anregungsschwelle hinzugenommen wird. Es ist beachtenswert, daß diese Verstärkung der stochastischen Resonanz eine geringere Rauschintensität zum Erreichen des Optimums benötigt als die standartmäßige stochastische Resonanz in anregbaren Systemen. Ich untersuche Frequenzselektivität bei der rauschinduzierten Signalverarbeitung von Signalen unterhalb der Anregungsschwelle in Systemen mit vielen rauschunterstützten stochastischen Attraktoren. Diese neuen Attraktoren mit abweichenden gemittelten Perioden weisen auch unterschiedliche Phasenbeziehungen zwischen den einzelnen Elementen auf. Ich zeige, daß die Signalantwort des gekoppelten Systems unter verschiedenen Rauscheinwirkungen deutlich verbessert oder auch reduziert werden kann durch das Treiben einzelner Elemente in Resonanz mit diesen neuen Resonanzfrequenzen, die mit passenden Phasenbeziehungen korrespondieren. Weiterhin konnte ich einen rauschinduzierten Phasenübergang von einem selbstoszillierenden System zu einem anregbaren System nachweisen. Dieser Übergang erfolgt durch eine rauschinduzierte Stabilisierung eines deterministisch instabilen Fixpunktes der lokalen Dynamik, während die gesamte Phasenraumstruktur des Systems erhalten bleibt. Die gemeinsame Wirkung von Kopplung und Rauschen führt zu einem neuen Typ von Phasenübergängen und bewirkt eine Stabilisierung des Systems. Das sich daraus ergebende rauschinduziert anregbare Regime zeigt charakteristische Eigenschaften von klassisch anregbaren Systemen, wie stochastische Resonanz und Wellenausbreitung. Dieser rauschinduzierte Phasenübergang ermöglicht dadurch die Übertragung von Signalen durch ansonsten global oszillierende Systeme und die Kontrolle der Signalübertragung durch Veränderung der Rauschintensität. Insbesondere eröffnen diese theoretischen Ergebnisse einen möglichen Mechanismus zur Unterdrückung unerwünschter globaler Oszillationen in neuronalen Netzwerken, welche charakteristisch für abnorme medizinische Zustände, wie z.B. bei der Parkinson′schen Krankheit oder Epilepsie, sind. Die Wirkung von Rauschen würde dann wieder die Anregbarkeit herstellen, die den normalen Zustand der erkrankten Neuronen darstellt. N2 - My thesis is concerned with several new noise-induced phenomena in excitable neural models, especially those with FitzHugh-Nagumo dynamics. In these effects the fluctuations intrinsically present in any complex neural network play a constructive role and improve functionality. I report the occurrence of Vibrational Resonance in excitable systems. Both in an excitable electronic circuit and in the FitzHugh-Nagumo model, I show that an optimal amplitude of high-frequency driving enhances the response of an excitable system to a low-frequency signal. Additionally, the influence of additive noise and the interplay between Stochastic and Vibrational Resonance is analyzed. Further, I study systems which combine both oscillatory and excitable properties, and hence intrinsically possess two internal frequencies. I show that in such a system the effect of Stochastic Resonance can be amplified by an additional high-frequency signal which is in resonance with the oscillatory frequency. This amplification needs much lower noise intensities than for conventional Stochastic Resonance in excitable systems. I study frequency selectivity in noise-induced subthreshold signal processing in a system with many noise-supported stochastic attractors. I show that the response of the coupled elements at different noise levels can be significantly enhanced or reduced by forcing some elements into resonance with these new frequencies which correspond to appropriate phase-relations. A noise-induced phase transition to excitability is reported in oscillatory media with FitzHugh-Nagumo dynamics. This transition takes place via noise-induced stabilization of a deterministically unstable fixed point of the local dynamics, while the overall phase-space structure of the system is maintained. The joint action of coupling and noise leads to a different type of phase transition and results in a stabilization of the system. The resulting noise-induced regime is shown to display properties characteristic of excitable media, such as Stochastic Resonance and wave propagation. This effect thus allows the transmission of signals through an otherwise globally oscillating medium. In particular, these theoretical findings suggest a possible mechanism for suppressing undesirable global oscillations in neural networks (which are usually characteristic of abnormal medical conditions such as Parkinson′s disease or epilepsy), using the action of noise to restore excitability, which is the normal state of neuronal ensembles. T2 - Noise-induced phenomena of signal transmission in excitable neural models KW - Rauschinduzierte Phänomene KW - Stochastische Prozesse KW - Rauschen KW - Stochastische Resonanz KW - Rauschinduzierte Anregbarkeit KW - Rauschinduzierte Oszillatonsunte KW - Noise-induced phenomena KW - stochastic processes KW - noise KW - stochastic resonance KW - noise-induced excitability KW - noise-induced oscillation suppression Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001522 ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Thapa, Samudrajit A1 - Seno, Flavio A1 - Liu, Xianbin A1 - Metzler, Ralf T1 - Fractional Brownian motion with random diffusivity BT - emerging residual nonergodicity below the correlation time JF - Journal of physics : A, Mathematical and theoretical N2 - Numerous examples for a priori unexpected non-Gaussian behaviour for normal and anomalous diffusion have recently been reported in single-particle tracking experiments. Here, we address the case of non-Gaussian anomalous diffusion in terms of a random-diffusivity mechanism in the presence of power-law correlated fractional Gaussian noise. We study the ergodic properties of this model via examining the ensemble- and time-averaged mean-squared displacements as well as the ergodicity breaking parameter EB quantifying the trajectory-to-trajectory fluctuations of the latter. For long measurement times, interesting crossover behaviour is found as function of the correlation time tau characterising the diffusivity dynamics. We unveil that at short lag times the EB parameter reaches a universal plateau. The corresponding residual value of EB is shown to depend only on tau and the trajectory length. The EB parameter at long lag times, however, follows the same power-law scaling as for fractional Brownian motion. We also determine a corresponding plateau at short lag times for the discrete representation of fractional Brownian motion, absent in the continuous-time formulation. These analytical predictions are in excellent agreement with results of computer simulations of the underlying stochastic processes. Our findings can help distinguishing and categorising certain nonergodic and non-Gaussian features of particle displacements, as observed in recent single-particle tracking experiments. KW - stochastic processes KW - anomalous diffusion KW - fractional Brownian motion KW - diffusing diffusivity KW - weak ergodicity breaking Y1 - 2020 U6 - https://doi.org/10.1088/1751-8121/aba467 SN - 1751-8113 SN - 1751-8121 VL - 53 IS - 47 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Niedermayer, Thomas T1 - On the depolymerization of actin filaments T1 - Über die Depolymerisation von Aktinfilamenten N2 - Actin is one of the most abundant and highly conserved proteins in eukaryotic cells. The globular protein assembles into long filaments, which form a variety of different networks within the cytoskeleton. The dynamic reorganization of these networks - which is pivotal for cell motility, cell adhesion, and cell division - is based on cycles of polymerization (assembly) and depolymerization (disassembly) of actin filaments. Actin binds ATP and within the filament, actin-bound ATP is hydrolyzed into ADP on a time scale of a few minutes. As ADP-actin dissociates faster from the filament ends than ATP-actin, the filament becomes less stable as it grows older. Recent single filament experiments, where abrupt dynamical changes during filament depolymerization have been observed, suggest the opposite behavior, however, namely that the actin filaments become increasingly stable with time. Several mechanisms for this stabilization have been proposed, ranging from structural transitions of the whole filament to surface attachment of the filament ends. The key issue of this thesis is to elucidate the unexpected interruptions of depolymerization by a combination of experimental and theoretical studies. In new depolymerization experiments on single filaments, we confirm that filaments cease to shrink in an abrupt manner and determine the time from the initiation of depolymerization until the occurrence of the first interruption. This duration differs from filament to filament and represents a stochastic variable. We consider various hypothetical mechanisms that may cause the observed interruptions. These mechanisms cannot be distinguished directly, but they give rise to distinct distributions of the time until the first interruption, which we compute by modeling the underlying stochastic processes. A comparison with the measured distribution reveals that the sudden truncation of the shrinkage process neither arises from blocking of the ends nor from a collective transition of the whole filament. Instead, we predict a local transition process occurring at random sites within the filament. The combination of additional experimental findings and our theoretical approach confirms the notion of a local transition mechanism and identifies the transition as the photo-induced formation of an actin dimer within the filaments. Unlabeled actin filaments do not exhibit pauses, which implies that, in vivo, older filaments become destabilized by ATP hydrolysis. This destabilization can be identified with an acceleration of the depolymerization prior to the interruption. In the final part of this thesis, we theoretically analyze this acceleration to infer the mechanism of ATP hydrolysis. We show that the rate of ATP hydrolysis is constant within the filament, corresponding to a random as opposed to a vectorial hydrolysis mechanism. N2 - Aktin ist eines der am häufigsten vorkommenden und am stärksten konservierten Proteine in eukaryotischen Zellen. Dieses globuläre Protein bildet lange Filamente, die zu einer großen Vielfalt von Netzwerken innerhalb des Zellskeletts führen. Die dynamische Reorganisation dieser Netzwerke, die entscheidend für Zellbewegung, Zelladhäsion, und Zellteilung ist, basiert auf der Polymerisation (dem Aufbau) und der Depolymerisation (dem Abbau) von Aktinfilamenten. Aktin bindet ATP, welches innerhalb des Filaments auf einer Zeitskala von einigen Minuten in ADP hydrolysiert wird. Da ADP-Aktin schneller vom Filamentende dissoziiert als ATP-Aktin, sollte ein Filament mit der Zeit instabiler werden. Neuere Experimente, in denen abrupte dynamische Änderungen während der Filamentdepolymerisation beobachtet wurden, deuten jedoch auf ein gegenteiliges Verhalten hin: Die Aktinfilamente werden mit der Zeit zunehmend stabiler. Mehrere Mechanismen für diese Stabilisierung wurden bereits vorgeschlagen, von strukturellen Übergängen des gesamten Filaments bis zu Wechselwirkungen der Filamentenden mit dem experimentellen Aufbau. Das zentrale Thema der vorliegenden Dissertation ist die Aufklärung der unerwarteten Unterbrechungen der Depolymerisation. Dies geschieht durch eine Kombination von experimentellen und theoretischen Untersuchungen. Mit Hilfe neuer Depolymerisationexperimente mit einzelnen Filamenten bestätigen wir zunächst, dass die Filamente plötzlich aufhören zu schrumpfen und bestimmen die Zeit, die von der Einleitung der Depolymerisation bis zum Auftreten der ersten Unterbrechung vergeht. Diese Zeit unterscheidet sich von Filament zu Filament und stellt eine stochastische Größe dar. Wir untersuchen daraufhin verschiedene hypothetische Mechanismen, welche die beobachteten Unterbrechungen verursachen könnten. Die Mechanismen können experimentell nicht direkt unterschieden werden, haben jedoch verschiedene Verteilungen für die Zeit bis zur ersten Unterbrechung zur Folge. Wir berechnen die jeweiligen Verteilungen, indem wir die zugrundeliegenden stochastischen Prozesse modellieren. Ein Vergleich mit der gemessenen Verteilung zeigt, dass der plötzliche Abbruch des Depolymerisationsprozesses weder auf eine Blockade der Enden, noch auf einen kollektiven strukturellen Übergang des gesamten Filaments zurückzuführen ist. An Stelle dessen postulieren wir einen lokalen Übergangsprozess, der an zufälligen Stellen innerhalb des Filaments auftritt. Die Kombination von weiteren experimentellen Ergebnissen und unserem theoretischen Ansatz bestätigt die Vorstellung eines lokalen Übergangsmechanismus und identifiziert den Übergang als die photo-induzierte Bildung eines Aktindimers innerhalb des Filaments. Nicht fluoreszenzmarkierte Aktinfilamente zeigen keine Unterbrechungen, woraus folgt, dass ältere Filamente in vivo durch die ATP-Hydrolyse destabilisiert werden. Die Destabilisierung zeigt sich durch die Beschleunigung der Depolymerisation vor der Unterbrechung. Im letzten Teil der vorliegenden Arbeit untersuchen wir diese Beschleunigung mit theoretischen Methoden, um auf den Mechanismus der ATP-Hydrolyse zu schließen. Wir zeigen, dass die Hydrolyserate von ATP innerhalb des Filaments konstant ist, was dem sogenannten zufälligen Hydrolysemechanismus entspricht und im Gegensatz zum sogenannten vektoriellen Mechanismus steht. KW - Aktinfilamente KW - Depolymerisation KW - stochastische Prozesse KW - Fluoreszenzmikroskopie KW - ATP-Hydrolyse KW - actin filaments KW - depolymerization KW - stochastic processes KW - fluorescence microscopy KW - ATP hydrolysis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63605 ER - TY - JOUR A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Bodrova, Anna S. T1 - Ultraslow scaled Brownian motion JF - New journal of physics : the open-access journal for physics N2 - We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations. KW - anomalous diffusion KW - stochastic processes KW - ageing Y1 - 2015 U6 - https://doi.org/10.1088/1367-2630/17/6/063038 SN - 1367-2630 VL - 17 IS - 063038 PB - Dt. Physikalische Ges., IOP CY - Bad Honnef, London ER - TY - GEN A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Bodrova, Anna S. T1 - Ultraslow scaled Brownian motion T2 - New journal of physics : the open-access journal for physics N2 - We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 188 KW - anomalous diffusion KW - stochastic processes KW - ageing Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78618 ER - TY - JOUR A1 - Bär, Markus A1 - Großmann, Robert A1 - Heidenreich, Sebastian A1 - Peruani, Fernando T1 - Self-propelled rods BT - insights and perspectives for active matter JF - Annual review of condensed matter physics N2 - A wide range of experimental systems including gliding, swarming and swimming bacteria, in vitro motility assays, and shaken granular media are commonly described as self-propelled rods. Large ensembles of those entities display a large variety of self-organized, collective phenomena, including the formation of moving polar clusters, polar and nematic dynamic bands, mobility-induced phase separation, topological defects, and mesoscale turbulence, among others. Here, we give a brief survey of experimental observations and review the theoretical description of self-propelled rods. Our focus is on the emergent pattern formation of ensembles of dry self-propelled rods governed by short-ranged, contact mediated interactions and their wet counterparts that are also subject to long-ranged hydrodynamic flows. Altogether, self-propelled rods provide an overarching theme covering many aspects of active matter containing well-explored limiting cases. Their collective behavior not only bridges the well-studied regimes of polar selfpropelled particles and active nematics, and includes active phase separation, but also reveals a rich variety of new patterns. KW - collective motion KW - statistical physics KW - biological physics KW - nonequilibrium physics KW - stochastic processes Y1 - 2019 U6 - https://doi.org/10.1146/annurev-conmatphys-031119-050611 SN - 1947-5454 SN - 1947-5462 VL - 11 SP - 441 EP - 466 PB - Annual Reviews CY - Palo Alto ER -