TY - JOUR A1 - Steppa, Constantin A1 - Egberts, Kathrin T1 - Modelling the Galactic very-high-energy gamma-ray source population JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The High Energy Stereoscopic System Galactic plane survey (HGPS) is to date the most comprehensive census of Galactic gamma -ray sources at very high energies (VHE; 100 GeV <= E <= 100 TeV). As a consequence of the limited sensitivity of this survey, the 78 detected gamma -ray sources comprise only a small and biased subsample of the overall population. The larger part consists of currently unresolved sources, which contribute to large-scale diffuse emission to a still uncertain amount.Aims. We study the VHE gamma -ray source population in the Milky Way. For this purpose population-synthesis models are derived based on the distributions of source positions, extents, and luminosities.Methods. Several azimuth-symmetric and spiral-arm models are compared for spatial source distribution. The luminosity and radius function of the population are derived from the source properties of the HGPS data set and are corrected for the sensitivity bias of the HGPS. Based on these models, VHE source populations are simulated and the subsets of sources detectable according to the HGPS are compared with HGPS sources.Results. The power-law indices of luminosity and radius functions are determined to range between -1.6 and -1.9 for luminosity and -1.1 and -1.6 for radius. A two-arm spiral structure with central bar is discarded as spatial distribution of VHE sources, while azimuth-symmetric distributions and a distribution following a four-arm spiral structure without bar describe the HGPS data reasonably well. The total number of Galactic VHE sources is predicted to be in the range from 800 to 7000 with a total luminosity and flux of (1.6-6.3) x 10(36) ph s(-1) and (3-15) x 10(-10) ph cm(-2) s(-1), respectively.Conclusions. Depending on the model, the HGPS sample accounts for (68-87)% of the emission of the population in the scanned region. This suggests that unresolved sources represent a critical component of the diffuse emission measurable in the HGPS. With the foreseen jump in sensitivity of the Cherenkov Telescope Array, the number of detectable sources is predicted to increase by a factor between 5 and 9. KW - astroparticle physics KW - gamma rays: general KW - gamma rays: diffuse KW - background KW - methods: observational KW - methods: numerical Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/202038172 SN - 0004-6361 SN - 1432-0746 VL - 643 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sparre, Martin A1 - Pfrommer, Christoph A1 - Vogelsberger, Mark T1 - The physics of multiphase gas flows BT - fragmentation of a radiatively cooling gas cloud in a hot wind JF - Monthly notices of the Royal Astronomical Society N2 - Galactic winds exhibit a multiphase structure that consists of hot-diffuse and cold-dense phases. Here we present high-resolution idealized simulations of the interaction of a hot supersonic wind with a cold cloud with the moving-mesh code AREPO in setups with and without radiative cooling. We demonstrate that cooling causes clouds with sizes larger than the cooling length to fragment in 2D and 3D simulations. We confirm earlier 2D simulations by McCourt et al. (2018) and highlight differences of the shattering processes of 3D clouds that are exposed to a hot wind. The fragmentation process is quantified with a friends-of-friends analysis of shattered cloudlets and density power spectra. Those show that radiative cooling causes the power spectral index to gradually increase when the initial cloud radius is larger than the cooling length and with increasing time until the cloud is fully dissolved in the hot wind. A resolution of around 1 pc is required to reveal the effect of cooling-induced fragmentation of a 100 pc outflowing cloud. Thus, state-of-the-art cosmological zoom simulations of the circumgalactic medium fall short by orders of magnitudes from resolving this fragmentation process. This physics is, however, necessary to reliably model observed column densities and covering fractions of Lyman alpha haloes, high-velocity clouds, and broad-line regions of active galactic nuclei. KW - methods: numerical KW - ISM: jets and outflows KW - galaxies: formation Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty3063 SN - 0035-8711 SN - 1365-2966 VL - 482 IS - 4 SP - 5401 EP - 5421 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Seiler, Michael A1 - Seiß, Martin A1 - Hoffmann, Holger A1 - Spahn, Frank T1 - Hydrodynamic Simulations of Asymmetric Propeller Structures in Saturn's Rings JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - The observation of the non-Keplerian behavior of propeller structures in Saturn's outer A ring raises the question: how does the propeller respond to the wandering of the central embedded moonlet? Here, we study numerically how the structural imprint of the propeller changes for a libration of the moonlet. It turns out that the libration induces an asymmetry in the propeller, which depends on the libration period and amplitude of the moonlet. Further, we study the dependence of the asymmetry on the libration period and amplitude for a moonlet with a 400 m Hill radius, which is located in the outer A ring. This allows us to apply our findings to the largest known propeller Blériot, which is expected to be of a similar size. For Blériot, we can conclude that, supposing the moonlet is librating with the largest observed period of 11.1 yr and an azimuthal amplitude of about 1845 km, a small asymmetry should be measurable but depends on the moonlet's libration phase at the observation time. The longitude residuals of other trans-Encke propellers (e.g., Earhart) show amplitudes similar to Blériot, which might allow us to observe larger asymmetries due to their smaller azimuthal extent, allowing us to scan the whole gap structure for asymmetries in one observation. Although the librational model of the moonlet is a simplification, our results are a first step toward the development of a consistent model for the description of the formation of asymmetric propellers caused by a freely moving moonlet. KW - Hydrodynamics KW - methods: data analysis KW - methods: numerical KW - planets and satellites: dynamical evolution and stability KW - planets and satellites: individual (Saturn) KW - planets and satellites: rings Y1 - 2019 U6 - https://doi.org/10.3847/1538-4365/ab26b0 SN - 0067-0049 SN - 1538-4365 VL - 243 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Petrov, Mykola A1 - Pohl, Martin T1 - Wind nebulae and supernova remnants of very massive stars JF - Monthly notices of the Royal Astronomical Society N2 - A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4. KW - shock waves KW - methods: numerical KW - circumstellar matter KW - stars: massive Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa554 SN - 0035-8711 SN - 1365-2966 VL - 493 IS - 3 SP - 3548 EP - 3564 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Kreplin, Alexander A1 - Kraus, S. A1 - Vorobyov, E. I. A1 - Haemmerlé, Lionel A1 - Eislöffel, Jochen T1 - On the ALMA observability of nascent massive multiple systems formed by gravitational instability JF - Monthly notices of the Royal Astronomical Society N2 - Massive young stellar objects (MYSOs) form during the collapse of high-mass pre-stellar cores, where infalling molecular material is accreted through a centrifugally balanced accretion disc that is subject to efficient gravitational instabilities. In the resulting fragmented accretion disc of the MYSO, gaseous clumps and low-mass stellar companions can form, which will influence the future evolution of massive protostars in the Hertzsprung-Russell diagram. We perform dust continuum radiative transfer calculations and compute synthetic images of disc structures modelled by the gravito-radiation-hydrodynamics simulation of a forming MYSO, in order to investigate the Atacama Large Millimeter/submillimeter Array (alma) observability of circumstellar gaseous clumps and forming multiple systems. Both spiral arms and gaseous clumps located at similar or equal to a few from the protostar can be resolved by interferometric alma Cycle 7 C43-8 and C43-10 observations at band 6 (), using a maximal 0.015 aracsec beam angular resolution and at least exposure time for sources at distances of . Our study shows that substructures are observable regardless of their viewing geometry or can be inferred in the case of an edge-viewed disc. The observation probability of the clumps increases with the gradually increasing efficiency of gravitational instability at work as the disc evolves. As a consequence, large discs around MYSOs close to the zero-age-main-sequence line exhibit more substructures than at the end of the gravitational collapse. Our results motivate further observational campaigns devoted to the close surroundings of the massive protostars S255IR-NIRS3 and NGC 6334I-MM1, whose recent outbursts are a probable signature of disc fragmentation and accretion variability. KW - radiative transfer KW - methods: numerical KW - stars: circumstellar matter Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz1585 SN - 0035-8711 SN - 1365-2966 VL - 487 IS - 4 SP - 4473 EP - 4491 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hani, Maan H. A1 - Sparre, Martin A1 - Ellison, Sara L. A1 - Torrey, Paul A1 - Vogelsberger, Mark T1 - Galaxy mergers moulding the circum-galactic medium BT - I. The impact of a major merger JF - Monthly notices of the Royal Astronomical Society N2 - Galaxies are surrounded by sizeable gas reservoirs which host a significant amount of metals: the circum-galactic medium (CGM). The CGM acts as a mediator between the galaxy and the extragalactic medium. However, our understanding of how galaxy mergers, a major evolutionary transformation, impact the CGM remains deficient. We present a theoretical study of the effect of galaxy mergers on the CGM. We use hydrodynamical cosmological zoom-in simulations of a major merger selected from the Illustris project such that the z = 0 descendant has a halo mass and stellar mass comparable to the Milky Way. To study the CGM we then re-simulated this system at a 40 times better mass resolution, and included detailed post-processing ionization modelling. Our work demonstrates the effect the merger has on the characteristic size of the CGM, its metallicity, and the predicted covering fraction of various commonly observed gas-phase species, such as H I, C IV, and O VI. We show that merger-induced outflows can increase the CGM metallicity by 0.2-0.3 dex within 0.5 Gyr post-merger. These effects last up to 6 Gyr post-merger. While the merger increases the total metal covering fractions by factors of 2-3, the covering fractions of commonly observed UV ions decrease due to the hard ionizing radiation from the active galactic nucleus, which we model explicitly. Our study of the single simulated major merger presented in this work demonstrates the significant impact that a galaxy interaction can have on the size, metallicity, and observed column densities of the CGM. KW - methods: numerical KW - galaxies: evolution KW - galaxies: haloes KW - galaxies: interactions Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3252 SN - 0035-8711 SN - 1365-2966 VL - 475 IS - 1 SP - 1160 EP - 1176 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bustamante, Sebastian A1 - Sparre, Martin A1 - Springel, Volker A1 - Grand, Robert J. J. T1 - Merger-induced metallicity dilution in cosmological galaxy formation simulations JF - Monthly notices of the Royal Astronomical Society N2 - Observational studies have revealed that galaxy pairs tend to have lower gas-phase metallicity than isolated galaxies. This metallicity deficiency can be caused by inflows of low-metallicity gas due to the tidal forces and gravitational torques associated with galaxy mergers, diluting the metal content of the central region. In this work we demonstrate that such metallicity dilution occurs in state-of-the-art cosmological simulations of galaxy formation. We find that the dilution is typically 0.1 dex for major mergers, and is noticeable at projected separations smaller than 40 kpc. For minor mergers the metallicity dilution is still present, even though the amplitude is significantly smaller. Consistent with previous analysis of observed galaxies we find that mergers are outliers from the fundamental metallicity relation, with deviations being larger than expected for a Gaussian distribution of residuals. Our large sample of mergers within full cosmological simulations also makes it possible to estimate how the star formation rate enhancement and gas consumption timescale behave as a function of the merger mass ratio. We confirm that strong starbursts are likely to occur in major mergers, but they can also arise in minor mergers if more than two galaxies are participating in the interaction, a scenario that has largely been ignored in previous work based on idealised isolated merger simulations. KW - methods: numerical KW - galaxies: interactions KW - galaxies: star formation KW - galaxies: evolution Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1692 SN - 0035-8711 SN - 1365-2966 VL - 479 IS - 3 SP - 3381 EP - 3392 PB - Oxford Univ. Press CY - Oxford ER -