TY - JOUR A1 - Ślęzak, Jakub A1 - Metzler, Ralf A1 - Magdziarz, Marcin T1 - Superstatistical generalised Langevin equation BT - non-Gaussian viscoelastic anomalous diffusion JF - New Journal of Physics N2 - Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations. KW - anomalous diffusion KW - generalised langevin equation KW - superstatistics KW - non-Gaussian diffusion Y1 - 2018 U6 - https://doi.org/10.1088/1367-2630/aaa3d4 SN - 1367-2630 VL - 20 IS - 023026 SP - 1 EP - 25 PB - Deutsche Physikalische Gesellschaft / Institute of Physics CY - Bad Honnef und London ER - TY - JOUR A1 - Ślęzak, Jakub A1 - Metzler, Ralf A1 - Magdziarz, Marcin T1 - Codifference can detect ergodicity breaking and non-Gaussianity JF - New Journal of Physics N2 - We show that the codifference is a useful tool in studying the ergodicity breaking and non-Gaussianity properties of stochastic time series. While the codifference is a measure of dependence that was previously studied mainly in the context of stable processes, we here extend its range of applicability to random-parameter and diffusing-diffusivity models which are important in contemporary physics, biology and financial engineering. We prove that the codifference detects forms of dependence and ergodicity breaking which are not visible from analysing the covariance and correlation functions. We also discuss a related measure of dispersion, which is a nonlinear analogue of the mean squared displacement. KW - diffusion KW - stochastic time series KW - anomalous diffusion Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab13f3 SN - 1367-2630 VL - 21 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - JOUR A1 - Ślęzak, Jakub A1 - Burnecki, Krzysztof A1 - Metzler, Ralf T1 - Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems JF - New Journal of Physics N2 - Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as ‘superstatistics’ or ‘diffusing diffusivity’. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion. KW - diffusion KW - Langevin equation KW - Brownian yet non-Gaussian diffusion KW - diffusing diffusivity KW - superstatistics KW - autoregressive models KW - time series analysis KW - codifference Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab3366 SN - 1367-2630 VL - 21 PB - Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics CY - Bad Honnef und London ER - TY - JOUR A1 - Zuo, Guangzheng A1 - Shoaee, Safa A1 - Kemerink, Martijn A1 - Neher, Dieter T1 - General rules for the impact of energetic disorder and mobility on nongeminate recombination in phase-separated organic solar cells JF - Physical review applied N2 - State-of-the-art organic solar cells exhibit power conversion efficiencies of 18% and above. These devices benefit from the suppression of free charge recombination with regard to the Langevin limit of charge encounter in a homogeneous medium. It is recognized that the main cause of suppressed free charge recombination is the reformation and resplitting of charge-transfer (CT) states at the interface between donor and acceptor domains. Here, we use kinetic Monte Carlo simulations to understand the interplay between free charge motion and recombination in an energetically disordered phase-separated donor-acceptor blend. We identify conditions for encounter-dominated and resplitting-dominated recombination. In the former regime, recombination is proportional to mobility for all parameters tested and only slightly reduced with respect to the Langevin limit. In contrast, mobility is not the decisive parameter that determines the nongeminate recombination coefficient, k(2), in the latter case, where k2 is a sole function of the morphology, CT and charge-separated (CS) energetics, and CT-state decay properties. Our simulations also show that free charge encounter in the phase-separated disordered blend is determined by the average mobility of all carriers, while CT reformation and resplitting involves mostly states near the transport energy. Therefore, charge encounter is more affected by increased disorder than the resplitting of the CT state. As a consequence, for a given mobility, larger energetic disorder, in combination with a higher hopping rate, is preferred. These findings have implications for the understanding of suppressed recombination in solar cells with nonfullerene acceptors, which are known to exhibit lower energetic disorder than that of fullerenes. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevApplied.16.034027 SN - 2331-7019 VL - 16 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Zu, Fengshuo A1 - Wolff, Christian Michael A1 - Ralaiarisoa, Maryline A1 - Amsalem, Patrick A1 - Neher, Dieter A1 - Koch, Norbert T1 - Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies JF - ACS applied materials & interfaces N2 - The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study. With ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe, we evidence that even minute UV photon fluxes (500 times lower than that used in typical UPS experiments) are sufficient to induce SPV and shift the perovskite Φ and VBM by several 100 meV compared to dark. By combining UV and visible light, we establish flat band conditions (i.e., compensate the surface-state-induced surface band bending) at the surface of four important perovskites, and find that all are p-type in the bulk, despite a pronounced n-type surface character in the dark. The present findings highlight that SPV effects must be considered in all surface studies to fully understand perovskites’ photophysical properties. KW - lead halide perovskite films KW - ultraviolet photoelectron spectroscopy KW - Kelvin probe KW - surface band bending KW - surface photovoltage KW - surface states Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b05293 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 24 SP - 21578 EP - 21583 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zu, Fengshuo A1 - Schultz, Thorsten A1 - Wolff, Christian Michael A1 - Shin, Dongguen A1 - Frohloff, Lennart A1 - Neher, Dieter A1 - Amsalem, Patrick A1 - Koch, Norbert T1 - Position-locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite JF - RSC Advances N2 - The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH3NH3PbI3 perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI2 and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N-2 and ambient air (relative humidity 20%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH3NH3PbI3 films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N-2 or air. We conclude that the light-induced decomposition reaction of CH3NH3PbI3, leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently "locking" the position of perovskite components at the surface or an interface should enhance the overall photostability. Y1 - 2020 U6 - https://doi.org/10.1039/d0ra03572f SN - 2046-2069 VL - 10 IS - 30 SP - 17534 EP - 17542 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zou, Yong A1 - Thiel, M. A1 - Romano, Maria Carmen A1 - Kurths, Jürgen A1 - Bi, Q. T1 - Shrimp structure and associated dynamics in parametrically excited oscillators JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - We investigate the bifurcation structures in a two-dimensional parameter space (PS) of a parametrically excited system with two degrees of freedom both analytically and numerically. By means of the Renyi entropy of second order K-2, which is estimated from recurrence plots, we uncover that regions of chaotic behavior are intermingled with many complex periodic windows, such as shrimp structures in the PS. A detailed numerical analysis shows that, the stable solutions lose stability either via period doubling, or via intermittency when the parameters leave these shrimps in different directions, indicating different bifurcation properties of the boundaries. The shrimps of different sizes offer promising ways to control the dynamics of such a complex system. KW - bifurcation analysis KW - recurrence plot KW - period doubling KW - intermittency Y1 - 2006 U6 - https://doi.org/10.1142/S0218127406016987 SN - 0218-1274 VL - 16 IS - 12 SP - 3567 EP - 3579 PB - World Scientific Publ. Co CY - Singapore ER - TY - JOUR A1 - Zhu, Hui A1 - Shprits, Yuri Y. A1 - Spasojevic, M. A1 - Drozdov, Alexander Y. T1 - New hiss and chorus waves diffusion coefficient parameterizations from the Van Allen Probes and their effect on long-term relativistic electron radiation-belt VERB simulations JF - Journal of Atmospheric and Solar-Terrestrial Physics N2 - New wave frequency and amplitude models for the nightside and dayside chorus waves are built based on measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. The corresponding 3D diffusion coefficients are systematically obtained. Compared with previous commonly-used (typical) parameterizations, the new parameterizations result in differences in diffusion rates that depend on the energy and pitch angle. Furthermore, one-year 3D diffusive simulations are performed using the Versatile Electron Radiation Belt (VERB) code. Both typical and new wave parameterizations simulation results are in a good agreement with observations at 0.9 MeV. However, the new parameterizations for nightside chorus better reproduce the observed electron fluxes. These parameterizations will be incorporated into future modeling efforts. KW - Inner magnetosphere KW - Radiation belts KW - Chorus waves KW - Diffusion coefficients KW - VERB code Y1 - 2019 U6 - https://doi.org/10.1016/j.jastp.2019.105090 SN - 1364-6826 SN - 1879-1824 VL - 193 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zhu, Hui A1 - Chen, Lunjin A1 - Liu, Xu A1 - Shprits, Yuri Y. T1 - Modulation of locally generated equatorial noise by ULF wave JF - Journal of geophysical research : Space physics N2 - In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon. Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026199 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 4 SP - 2779 EP - 2787 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Zhou, Changsong A1 - Zemanova, Lucia A1 - Zamora, Gorka A1 - Hilgetag, Claus C. A1 - Kurths, Jürgen T1 - Hierarchical organization unveiled by functional connectivity in complex brain networks JF - Physical review letters N2 - How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks. Y1 - 2006 U6 - https://doi.org/10.1103/PhysRevLett.97.238103 SN - 0031-9007 SN - 1079-7114 VL - 97 PB - American Physical Society CY - College Park ER -