TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Petrov, Mykola A1 - Pohl, Martin T1 - Wind nebulae and supernova remnants of very massive stars JF - Monthly notices of the Royal Astronomical Society N2 - A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4. KW - shock waves KW - methods: numerical KW - circumstellar matter KW - stars: massive Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa554 SN - 0035-8711 SN - 1365-2966 VL - 493 IS - 3 SP - 3548 EP - 3564 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Crovetto, Andrea A1 - Hempel, Hannes A1 - Rusu, Marin A1 - Choubrac, Leo A1 - Kojda, Sandrino Danny A1 - Habicht, Klaus A1 - Unold, Thomas T1 - Water adsorption enhances electrical conductivity in transparent p-type CuI JF - ACS applied materials & interfaces N2 - CuI has been recently rediscovered as a p-type transparent conductor with a high figure of merit. Even though many metal iodides are hygroscopic, the effect of moisture on the electrical properties of CuI has not been clarified. In this work, we observe a 2-fold increase in the conductivity of CuI after exposure to ambient humidity for 5 h, followed by slight long-term degradation. Simultaneously, the work function of CuI decreases by almost 1 eV, which can explain the large spread in the previously reported work function values. The conductivity increase is partially reversible and is maximized at intermediate humidity levels. On the basis of the large intragrain mobility measured by THz spectroscopy, we suggest that hydration of grain boundaries may be beneficial for the overall hole mobility. KW - transparent conductors KW - CuI KW - copper iodide KW - conductivity KW - humidity KW - p-type KW - work function Y1 - 2020 U6 - https://doi.org/10.1021/acsami.0c11040 SN - 1944-8244 SN - 1944-8252 VL - 12 IS - 43 SP - 48741 EP - 48747 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Abdalla, Hassan E. A1 - Adam, Remi A1 - Aharonian, Felix A. A1 - Benkhali, Faical Ait A1 - Angüner, Ekrem Oǧuzhan A1 - Arakawa, Masanori A1 - Arcaro, C A1 - Armand, Catherine A1 - Armstrong, T. A1 - Egberts, Kathrin T1 - Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance JF - Monthly Notices of the Royal Astronomical Society N2 - We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53. KW - BL Lacertae objects: individual KW - galaxies: high-redshift KW - gamma-rays: general KW - Resolved and unresolved sources as a function of wavelength Y1 - 2020 VL - 494 IS - 4 PB - Wiley-Blackwell CY - Oxford ER - TY - GEN A1 - Abdalla, Hassan E. A1 - Adam, Remi A1 - Aharonian, Felix A. A1 - Benkhali, Faical Ait A1 - Angüner, Ekrem Oǧuzhan A1 - Arakawa, Masanori A1 - Arcaro, C A1 - Armand, Catherine A1 - Armstrong, T. A1 - Egberts, Kathrin T1 - Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1202 KW - BL Lacertae objects: individual KW - galaxies: high-redshift KW - gamma-rays: general KW - Resolved and unresolved sources as a function of wavelength Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526000 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Kontro, Inkeri A1 - Buschhüter, David T1 - Validity of Colorado Learning Attitudes about Science Survey for a high-achieving, Finnish population JF - Physical review. Physics education research N2 - The Colorado Learning Attitudes about Science Survey (CLASS) is an instrument which is widely used in physics education to characterize students' attitudes toward physics and learning physics and compare them with those of experts. While CLASS has been extensively validated for use in the context of higher education institutions in the United States, there has been less information about its use with European students. We have studied the structural, content, and substantive aspects of validity of CLASS by first doing a confirmatory factor analysis of N = 642 sets of student answers from the University of Helsinki, Finland. The students represented a culturally and demographically different subset of university physics students than in previous studies. The confirmatory factor analysis used a 3-factor, 15-item factor structure as a starting point and the resulting factor structure was similar to the original. Just minor modifications were needed for fit parameters to be in the acceptable range. We explored the differences by student interviews and consultation of experts. With the exception of one item, they supported the new 14-item, 3-factor structure. The results show that the interpretations made from CLASS results are mostly transferable, and CLASS remains a useful instrument for a wide variety of populations. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevPhysEducRes.16.020104 SN - 2469-9896 VL - 16 IS - 2 PB - American Physical Society CY - College Park, MD ER - TY - JOUR A1 - Laquai, Rene A1 - Müller, Bernd R. A1 - Schneider, Judith Ann A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Using SXRR to probe the nature of discontinuities in SLM additive manufactured inconel 718 specimens JF - Metallurgical and Materials Transactions A N2 - The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity. Y1 - 2020 U6 - https://doi.org/10.1007/s11661-020-05847-5 SN - 1073-5623 SN - 1543-1940 VL - 51 IS - 8 SP - 4146 EP - 4157 PB - Springer CY - New York ER - TY - THES A1 - Müller, Jirka T1 - Untersuchungen zum flow-Erleben bei Experimenten als physikalische Lerngelegenheit N2 - In der vorliegenden Arbeit wird untersucht, in wie weit physikalische Experimente ein flow-Erleben bei Lernenden hervorrufen. Flow-Erleben wird als Motivationsursache gesehen und soll den Weg zu Freude und Glück darstellen. Insbesondere wegen dem oft zitierten Fachkräftemangel in naturwissenschaftlichen und technischen Berufen ist eine Motivationssteigerung in naturwissenschaftlichen Unterrichtsfächern wichtig. Denn trotz Leistungssteigerungen in internationalen Vergleichstests möchten in Deutschland deutlich weniger Schüler*innen einen solchen Beruf ergreifen als in anderen Industriestaaten. Daher gilt es, möglichst früh Schüler*innen für naturwissenschaftlich-technische Fächer zu begeistern und insbesondere im regelrecht verhassten Physikunterricht flow-Erleben zu erzeugen. Im Rahmen dieser Arbeit wird das flow-Erleben von Studierenden in klassischen Laborexperimenten und FELS (Forschend-Entdeckendes Lernen mit dem Smartphone) als Lernumgebung untersucht. FELS ist eine an die Lebenswelt der Schüler*innen angepasste Lernumgebung, in der sie mit Smartphones ihre eigene Lebenswelt experimentell untersuchen. Es zeigt sich, dass sowohl klassische Laborexperimente als auch in der Lebenswelt durchgeführte, smartphonebasierte Experimente flow-Erleben erzeugen. Allerdings verursachen die smartphonebasierten Experimente kaum Stressgefühle. Die in dieser Arbeit herausgefundenen Ergebnisse liefern einen ersten Ansatz, der durch Folgestudien erweitert werden sollte. N2 - The present work examines to what extent physical experiments induce a flow-experience in students. Experiencing flow is seen as a source of motivation and should represent the path to joy and happiness. In particular, because of the often-cited shortage of employees in the natural sciences and technical professions, increasing motivation in natural sciences subjects is important. Because despite performance increases in international comparative tests, significantly fewer students in Germany want to take up such a profession than in other industrialized countries. It is therefore important to get students enthusiastic about scientific and technical subjects as early as possible and, in particular, to create a flow experience in the downright hated physics class. In the context of this work, the flow-experience of students is examined as a learning environment in classic laboratory experiments and FELS (inquiry-based learning with the smartphone, based on the German term: Forschend-Entdeckendes Lernen mit dem Smartphone). FELS is a learning environment adapted to the students' living environment, in which they use smartphones to experimentally examine their own living environment. It turns out that both classic laboratory experiments and smartphone-based experiments create flow-experiences. However, the smartphone-based experiments hardly cause any feelings of stress. The results found in this work provide a first approach, which should be expanded through follow-up studies. T2 - Examining the flow-experience in experiments as a physical learning opportunity KW - Flow KW - Smartphone KW - Experimente KW - Physikdidaktik KW - FELS KW - Lernumgebung KW - blended learning KW - Forschend Entdeckendes Lernen KW - inquiry based learning KW - physics education KW - learning environment KW - experiment Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482879 ER - TY - JOUR A1 - Sposini, Vittoria A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Seno, Flavio T1 - Universal spectral features of different classes of random-diffusivity processes JF - New Journal of Physics N2 - Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations. KW - diffusion KW - power spectrum KW - random diffusivity KW - single trajectories Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab9200 SN - 1367-2630 VL - 22 IS - 6 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - GEN A1 - Sposini, Vittoria A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Seno, Flavio T1 - Universal spectral features of different classes of random-diffusivity processes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 999 KW - diffusion KW - power spectrum KW - random diffusivity KW - single trajectories Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476960 SN - 1866-8372 IS - 999 ER - TY - JOUR A1 - Wang, Wei A1 - Seno, Flavio A1 - Sokolov, Igor M. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Unexpected crossovers in correlated random-diffusivity processes JF - New Journal of Physics N2 - The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion. KW - diffusion KW - anomalous diffusion KW - non-Gaussianity KW - fractional Brownian motion Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/aba390 SN - 1367-2630 VL - 22 PB - Dt. Physikalische Ges. CY - Bad Honnef ER -