TY - JOUR A1 - Stolterfoht, Martin A1 - Le Corre, Vincent M. A1 - Feuerstein, Markus A1 - Caprioglio, Pietro A1 - Koster, Lambert Jan Anton A1 - Neher, Dieter T1 - Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells JF - Acs energy letters N2 - Optimizing the photoluminescence (PL) yield of a solar cell has long been recognized as a key principle to maximize the power conversion efficiency. While PL measurements are routinely applied to perovskite films and solar cells under open circuit conditions (V-OC), it remains unclear how the emission depends on the applied voltage. Here, we performed PL(V) measurements on perovskite cells with different hole transport layer thicknesses and doping concentrations, resulting in remarkably different fill factors (FFs). The results reveal that PL(V) mirrors the current-voltage (JV) characteristics in the power-generating regime, which highlights an interesting correlation between radiative and nonradiative recombination losses. In particular, high FF devices show a rapid quenching of PL(V) from open-circuit to the maximum power point. We conclude that, while the PL has to be maximized at V-OC at lower biases < V-OC the PL must be rapidly quenched as charges need to be extracted prior to recombination. Y1 - 2019 U6 - https://doi.org/10.1021/acsenergylett.9b02262 SN - 2380-8195 VL - 4 IS - 12 SP - 2887 EP - 2892 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Zhang, Shanshan A1 - Hages, Charles J. A1 - Rothhardt, Daniel A1 - Albrecht, Steve A1 - Burn, Paul L. A1 - Meredith, Paul A1 - Unold, Thomas A1 - Neher, Dieter T1 - Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells JF - Nature Energy N2 - The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81%). KW - Energy science and technology KW - Solar cells Y1 - 2018 U6 - https://doi.org/10.1038/s41560-018-0219-8 SN - 2058-7546 VL - 3 IS - 10 SP - 847 EP - 854 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Shoaee, Safa A1 - Stolterfoht, Martin A1 - Neher, Dieter T1 - The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells JF - dvanced energy materials N2 - Organic semiconductors are of great interest for a broad range of optoelectronic applications due to their solution processability, chemical tunability, highly scalable fabrication, and mechanical flexibility. In contrast to traditional inorganic semiconductors, organic semiconductors are intrinsically disordered systems and therefore exhibit much lower charge carrier mobilities-the Achilles heel of organic photovoltaic cells. In this progress review, the authors discuss recent important developments on the impact of charge carrier mobility on the charge transfer state dissociation, and the interplay of free charge extraction and recombination. By comparing the mobilities on different timescales obtained by different techniques, the authors highlight the dispersive nature of these materials and how this reflects on the key processes defining the efficiency of organic photovoltaics. KW - charge generation KW - charge recombination KW - extraction KW - mobility KW - organic solar cells KW - polymer:fullerene bulk heterojunction Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201703355 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 28 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhang, Shanshan A1 - Hosseini, Seyed Mehrdad A1 - Gunder, Rene A1 - Petsiuk, Andrei A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Shoaee, Safa A1 - Meredith, Paul A1 - Schorr, Susan A1 - Unold, Thomas A1 - Burn, Paul L. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells JF - Advanced materials N2 - 2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH3(CH2)(3)NH3)(2)(CH3NH3)(n-1)PbnI3n+1 perovskite cells with different numbers of [PbI6](4-) sheets (n = 2-4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V-OC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C-60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V-OC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements. KW - 2D perovskites KW - interface recombination KW - perovskite solar cells KW - photoluminescence KW - V-OC loss Y1 - 2019 U6 - https://doi.org/10.1002/adma.201901090 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 30 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Nordmann, Joleik A1 - Zhang, Shanshan A1 - Rothhardt, Daniel A1 - Hörmann, Ulrich A1 - Amir, Yohai A1 - Redinger, Alex A1 - Kegelmann, Lukas A1 - Zu, Fengshuo A1 - Albrecht, Steve A1 - Koch, Norbert A1 - Kirchartz, Thomas A1 - Saliba, Michael A1 - Unold, Thomas A1 - Neher, Dieter T1 - The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells JF - Energy & environmental science N2 - Charge transport layers (CTLs) are key components of diffusion controlled perovskite solar cells, however, they can induce additional non-radiative recombination pathways which limit the open circuit voltage (V-OC) of the cell. In order to realize the full thermodynamic potential of the perovskite absorber, both the electron and hole transport layer (ETL/HTL) need to be as selective as possible. By measuring the photoluminescence yield of perovskite/CTL heterojunctions, we quantify the non-radiative interfacial recombination currents in pin- and nip-type cells including high efficiency devices (21.4%). Our study comprises a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes. We find that all studied CTLs limit the V-OC by inducing an additional non-radiative recombination current that is in most cases substantially larger than the loss in the neat perovskite and that the least-selective interface sets the upper limit for the V-OC of the device. Importantly, the V-OC equals the internal quasi-Fermi level splitting (QFLS) in the absorber layer only in high efficiency cells, while in poor performing devices, the V-OC is substantially lower than the QFLS. Using ultraviolet photoelectron spectroscopy and differential charging capacitance experiments we show that this is due to an energy level mis-alignment at the p-interface. The findings are corroborated by rigorous device simulations which outline important considerations to maximize the V-OC. This work highlights that the challenge to suppress non-radiative recombination losses in perovskite cells on their way to the radiative limit lies in proper energy level alignment and in suppression of defect recombination at the interfaces. Y1 - 2019 U6 - https://doi.org/10.1039/c9ee02020a SN - 1754-5692 SN - 1754-5706 VL - 12 IS - 9 SP - 2778 EP - 2788 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zeiske, Stefan A1 - Sandberg, Oskar J. A1 - Zarrabi, Nasim A1 - Wolff, Christian Michael A1 - Raoufi, Meysam A1 - Peña-Camargo, Francisco A1 - Gutierrez-Partida, Emilio A1 - Meredith, Paul A1 - Stolterfoht, Martin A1 - Armin, Ardalan T1 - Static disorder in lead halide perovskites JF - The journal of physical chemistry letters N2 - In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 +/- 1.0, 13.2 +/- 1.0, and 13.5 +/- 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ?+/- 0.5, 4.7 +/- 0.3, and 3.3 +/- 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices. KW - Cations KW - External quantum efficiency KW - Perovskites KW - Solar cells KW - Solar energy Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c01652 SN - 1948-7185 VL - 13 IS - 31 SP - 7280 EP - 7285 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Pena-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Hempel, Hannes A1 - Musiienko, Artem A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Warby, Jonathan A1 - Unold, Thomas A1 - Lang, Felix A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Revealing the doping density in perovskite solar cells and its impact on device performance JF - Applied physics reviews N2 - Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085286 SN - 1931-9401 VL - 9 IS - 2 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Yazmaciyan, Aren A1 - Stolterfoht, Martin A1 - Burn, Paul L. A1 - Lin, Qianqian A1 - Meredith, Paul A1 - Armin, Ardalan T1 - Recombination losses above and below the transport percolation threshold in bulk heterojunction organic solar cells JF - Advanced energy materials N2 - Achieving the highest power conversion efficiencies in bulk heterojunction organic solar cells requires a morphology that delivers electron and hole percolation pathways for optimized transport, plus sufficient donor:acceptor contact area for near unity charge transfer state formation. This is a significant structural challenge, particularly in semiconducting polymer:fullerene systems. This balancing act in the model high efficiency PTB7:PC70BM blend is studied by tuning the donor:acceptor ratio, with a view to understanding the recombination loss mechanisms above and below the fullerene transport percolation threshold. The internal quantum efficiency is found to be strongly correlated to the slower carrier mobility in agreement with other recent studies. Furthermore, second-order recombination losses dominate the shape of the current density-voltage curve in efficient blend combinations, where the fullerene phase is percolated. However, below the charge transport percolation threshold, there is an electric-field dependence of first-order losses, which includes electric-field-dependent photogeneration. In the intermediate regime, the fill factor appears to be limited by both first- and second-order losses. These findings provide additional basic understanding of the interplay between the bulk heterojunction morphology and the order of recombination in organic solar cells. They also shed light on the limitations of widely used transport models below the percolation threshold. KW - bulk heterojunctions KW - charge transport KW - organic solar cells KW - percolation threshold KW - recombination losses Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201703339 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 18 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Würfel, Uli A1 - Perdigon-Toro, Lorena A1 - Kurpiers, Jona A1 - Wolff, Christian Michael A1 - Caprioglio, Pietro A1 - Rech, Jeromy James A1 - Zhu, Jingshuai A1 - Zhan, Xiaowei A1 - You, Wei A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells JF - The journal of physical chemistry letters N2 - Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.9b01175 SN - 1948-7185 VL - 10 IS - 12 SP - 3473 EP - 3480 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Peña-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Tokmoldin, Nurlan A1 - Gutierrez-Partida, Emilio A1 - Peters, Karol Pawel A1 - Perdigón-Toro, Lorena A1 - Futscher, Moritz H. A1 - Lang, Felix A1 - Warby, Jonathan A1 - Snaith, Henry J. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Quantification of efficiency losses due to mobile ions in Perovskite solar cells via fast hysteresis measurements JF - Solar RRL N2 - Perovskite semiconductors differ from most inorganic and organic semiconductors due to the presence of mobile ions in the material. Although the phenomenon is intensively investigated, important questions such as the exact impact of the mobile ions on the steady-state power conversion efficiency (PCE) and stability remain. Herein, a simple method is proposed to estimate the efficiency loss due to mobile ions via "fast-hysteresis" measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds (approximate to 1000 V s(-1)). The "ion-free" PCE is between 1% and 3% higher than the steady-state PCE, demonstrating the importance of ion-induced losses, even in cells with low levels of hysteresis at typical scan speeds (approximate to 100mv s(-1)). The hysteresis over many orders of magnitude in scan speed provides important information on the effective ion diffusion constant from the peak hysteresis position. The fast-hysteresis measurements are corroborated by transient charge extraction and capacitance measurements and numerical simulations, which confirm the experimental findings and provide important insights into the charge carrier dynamics. The proposed method to quantify PCE losses due to field screening induced by mobile ions clarifies several important experimental observations and opens up a large range of future experiments. KW - hysteresis KW - mobile ions KW - perovskite solar cells Y1 - 2021 U6 - https://doi.org/10.1002/solr.202100772 SN - 2367-198X VL - 6 IS - 4 PB - Wiley-VCH CY - Weinheim ER -