TY - JOUR A1 - Heinsohn, Natascha Katharina A1 - Niedl, Robert Raimund A1 - Anielski, Alexander A1 - Lisdat, Fred A1 - Beta, Carsten T1 - Electrophoretic mu PAD for purification and analysis of DNA samples JF - Biosensors : open access journal N2 - In this work, the fabrication and characterization of a simple, inexpensive, and effective microfluidic paper analytic device (mu PAD) for monitoring DNA samples is reported. The glass microfiber-based chip has been fabricated by a new wax-based transfer-printing technique and an electrode printing process. It is capable of moving DNA effectively in a time-dependent fashion. The nucleic acid sample is not damaged by this process and is accumulated in front of the anode, but not directly on the electrode. Thus, further DNA processing is feasible. The system allows the DNA to be purified by separating it from other components in sample mixtures such as proteins. Furthermore, it is demonstrated that DNA can be moved through several layers of the glass fiber material. This proof of concept will provide the basis for the development of rapid test systems, e.g., for the detection of pathogens in water samples. KW - microfluidic paper analytic device (mu PAD) KW - patterning glass microfiber KW - fiber-electrophoresis chip KW - DNA KW - imprinted electrodes KW - cross layer chip KW - polymerase chain reaction (PCR) KW - purification Y1 - 2022 U6 - https://doi.org/10.3390/bios12020062 SN - 2079-6374 VL - 12 IS - 2 PB - MDPI CY - Basel ER -