TY - GEN A1 - Granado, Felipe Le Vot A1 - Abad, Enrique A1 - Metzler, Ralf A1 - Yuste, Santos B. T1 - Continuous time random walk in a velocity field BT - role of domain growth, Galilei-invariant advection-diffusion, and kinetics of particle mixing T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We consider the emerging dynamics of a separable continuous time random walk (CTRW) in the case when the random walker is biased by a velocity field in a uniformly growing domain. Concrete examples for such domains include growing biological cells or lipid vesicles, biofilms and tissues, but also macroscopic systems such as expanding aquifers during rainy periods, or the expanding Universe. The CTRW in this study can be subdiffusive, normal diffusive or superdiffusive, including the particular case of a Lévy flight. We first consider the case when the velocity field is absent. In the subdiffusive case, we reveal an interesting time dependence of the kurtosis of the particle probability density function. In particular, for a suitable parameter choice, we find that the propagator, which is fat tailed at short times, may cross over to a Gaussian-like propagator. We subsequently incorporate the effect of the velocity field and derive a bi-fractional diffusion-advection equation encoding the time evolution of the particle distribution. We apply this equation to study the mixing kinetics of two diffusing pulses, whose peaks move towards each other under the action of velocity fields acting in opposite directions. This deterministic motion of the peaks, together with the diffusive spreading of each pulse, tends to increase particle mixing, thereby counteracting the peak separation induced by the domain growth. As a result of this competition, different regimes of mixing arise. In the case of Lévy flights, apart from the non-mixing regime, one has two different mixing regimes in the long-time limit, depending on the exact parameter choice: in one of these regimes, mixing is mainly driven by diffusive spreading, while in the other mixing is controlled by the velocity fields acting on each pulse. Possible implications for encounter–controlled reactions in real systems are discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1005 KW - diffusion KW - expanding medium KW - continuous time random walk Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-479997 SN - 1866-8372 IS - 1005 SP - 28 ER - TY - GEN A1 - Ślęzak, Jakub A1 - Metzler, Ralf A1 - Magdziarz, Marcin T1 - Codifference can detect ergodicity breaking and non-Gaussianity T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We show that the codifference is a useful tool in studying the ergodicity breaking and non-Gaussianity properties of stochastic time series. While the codifference is a measure of dependence that was previously studied mainly in the context of stable processes, we here extend its range of applicability to random-parameter and diffusing-diffusivity models which are important in contemporary physics, biology and financial engineering. We prove that the codifference detects forms of dependence and ergodicity breaking which are not visible from analysing the covariance and correlation functions. We also discuss a related measure of dispersion, which is a nonlinear analogue of the mean squared displacement. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 748 KW - diffusion KW - anomalous diffusion KW - stochastic time series Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436178 IS - 748 ER - TY - GEN A1 - Sposini, Vittoria A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Single-trajectory spectral analysis of scaled Brownian motion T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 753 KW - diffusion KW - anomalous diffusion KW - power spectral analysis KW - single trajectory analysis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436522 SN - 1866-8372 IS - 753 ER - TY - GEN A1 - Ślęzak, Jakub A1 - Burnecki, Krzysztof A1 - Metzler, Ralf T1 - Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as ‘superstatistics’ or ‘diffusing diffusivity’. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 765 KW - diffusion KW - Langevin equation KW - Brownian yet non-Gaussian diffusion KW - diffusing diffusivity KW - superstatistics KW - autoregressive models KW - time series analysis KW - codifference Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437923 SN - 1866-8372 IS - 765 ER - TY - GEN A1 - Cherstvy, Andrey G. A1 - Vinod, Deepak A1 - Aghion, Erez A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Time averaging, ageing and delay analysis of financial time series N2 - We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black–Scholes–Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 347 KW - diffusion KW - financial time series KW - geometric Brownian motion KW - time averaging Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400541 ER - TY - GEN A1 - Thapa, Samudrajit A1 - Wyłomańska, Agnieszka A1 - Sikora, Grzegorz A1 - Wagner, Caroline E. A1 - Krapf, Diego A1 - Kantz, Holger A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Extensive time-series encoding the position of particles such as viruses, vesicles, or individualproteins are routinely garnered insingle-particle tracking experiments or supercomputing studies.They contain vital clues on how viruses spread or drugs may be delivered in biological cells.Similar time-series are being recorded of stock values in financial markets and of climate data.Such time-series are most typically evaluated in terms of time-averaged mean-squareddisplacements (TAMSDs), which remain random variables for finite measurement times. Theirstatistical properties are different for differentphysical stochastic processes, thus allowing us toextract valuable information on the stochastic process itself. To exploit the full potential of thestatistical information encoded in measured time-series we here propose an easy-to-implementand computationally inexpensive new methodology, based on deviations of the TAMSD from itsensemble average counterpart. Specifically, we use the upper bound of these deviations forBrownian motion (BM) to check the applicability of this approach to simulated and real data sets.By comparing the probability of deviations fordifferent data sets, we demonstrate how thetheoretical bound for BM reveals additional information about observed stochastic processes. Weapply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracerbeads measured in mucin hydrogels, and of geographic surface temperature anomalies. Ouranalysis shows how the large-deviation properties can be efficiently used as a simple yet effectiveroutine test to reject the BM hypothesis and unveil relevant information on statistical propertiessuch as ergodicity breaking and short-time correlations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1118 KW - diffusion KW - anomalous diffusion KW - large-deviation statistic KW - time-averaged mean squared displacement KW - Chebyshev inequality Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-493494 SN - 1866-8372 IS - 1118 ER - TY - GEN A1 - Xu, Pengbo A1 - Zhou, Tian A1 - Metzler, Ralf A1 - Deng, Weihua T1 - Stochastic harmonic trapping of a Lévy walk: transport and first-passage dynamics under soft resetting strategies T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We introduce and study a Lévy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1262 KW - diffusion KW - anomalous diffusion KW - stochastic resetting KW - Levy walks Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560402 SN - 1866-8372 SP - 1 EP - 28 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Makwana, Kirit D. A1 - Yan, Huirong T1 - Properties of magnetohydrodynamic modes in compressively driven plasma turbulence T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD simulations into linear MHD modes-namely, the Alfven, slow magnetosonic, and fast magnetosonic modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfven Mach number (M-A), plasma beta, and the sonic Mach number from subsonic to transsonic. We find that the proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The anisotropy of the modes is analyzed by means of their structure functions. The Alfven-mode anisotropy is consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvenic turbulence as we go from low to high M-A. The slow-mode properties are similar to the Alfven mode. On the other hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction of the mode mixture. The fast-mode behavior does not show any transition in going from low to high M-A. We find indications that there is some interaction between the different modes, and the properties of the dominant mode can affect the properties of the weaker modes. This work identifies the conditions under which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic reconnection are discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1225 KW - mhd turbulence KW - star formation KW - simulations KW - Anisotropy KW - diffusion Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-531607 SN - 1866-8372 VL - 10 IS - 3 PB - American Physical Society (APS) CY - College Park ER - TY - GEN A1 - Li, Yongge A1 - Mei, Ruoxing A1 - Xu, Yong A1 - Kurths, Jürgen A1 - Duan, Jinqiao A1 - Metzler, Ralf T1 - Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D ₀), as well as a low (D ₘ) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the Itô calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D ₘ will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D ₘ, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 974 KW - diffusion KW - channel KW - space-dependent diffusivity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474542 SN - 1866-8372 IS - 974 ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Distribution of first-reaction times with target regions on boundaries of shell-like domains T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study the probability density function (PDF) of the first-reaction times between a diffusive ligand and a membrane-bound, immobile imperfect target region in a restricted 'onion-shell' geometry bounded by two nested membranes of arbitrary shapes. For such a setting, encountered in diverse molecular signal transduction pathways or in the narrow escape problem with additional steric constraints, we derive an exact spectral form of the PDF, as well as present its approximate form calculated by help of the so-called self-consistent approximation. For a particular case when the nested domains are concentric spheres, we get a fully explicit form of the approximated PDF, assess the accuracy of this approximation, and discuss various facets of the obtained distributions. Our results can be straightforwardly applied to describe the PDF of the terminal reaction event in multi-stage signal transduction processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1255 KW - diffusion KW - first-passage time KW - first-reaction time KW - shell-like geometries KW - approximate methods Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557542 SN - 1866-8372 SP - 1 EP - 23 PB - Universitätsverlag Potsdam CY - Potsdam ER -