TY - JOUR A1 - Lever, Fabiano A1 - Mayer, Dennis A1 - Metje, Jan A1 - Alisauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard J. A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Core-level spectroscopy of 2-thiouracil at the sulfur L1 and L2,3 edges utilizing a SASE free-electron-laser JF - Molecules N2 - In this paper, we report X-ray absorption and core-level electron spectra of the nucleobase derivative 2-thiouracil at the sulfur L1- and L2,3-edges. We used soft X-rays from the free-electron laser FLASH2 for the excitation of isolated molecules and dispersed the outgoing electrons with a magnetic bottle spectrometer. We identified photoelectrons from the 2p core orbital, accompanied by an electron correlation satellite, as well as resonant and non-resonant Coster–Kronig and Auger–Meitner emission at the L1- and L2,3-edges, respectively. We used the electron yield to construct X-ray absorption spectra at the two edges. The experimental data obtained are put in the context of the literature currently available on sulfur core-level and 2-thiouracil spectroscopy. KW - X-ray KW - photoelectron KW - sulfur KW - thiouracil KW - nucleobases KW - Coster–Kronig KW - Auger–Meitner KW - NEXAFS KW - FLASH Y1 - 2021 SN - 1420-3049 VL - 26 IS - 21 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wang, Qiong A1 - Mosconi, Edoardo A1 - Wolff, Christian Michael A1 - Li, Junming A1 - Neher, Dieter A1 - De Angelis, Filippo A1 - Suranna, Gian Paolo A1 - Grisorio, Roberto A1 - Abate, Antonio T1 - Rationalizing the molecular design of hole-selective contacts to improve charge extraction in Perovskite solar cells JF - dvanced energy materials N2 - Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C-9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro-OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6%) is achieved by using the new HSMs in suitable perovskite solar cells. Time-resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro-OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS-integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro-OMeTAD. Importantly, the low-cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells. KW - hole extraction KW - hole selective materials KW - perovskite solar cells KW - sulfur KW - triple-cation perovskite Y1 - 2019 U6 - https://doi.org/10.1002/aenm.201900990 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 28 PB - Wiley-VCH CY - Weinheim ER -