TY - JOUR A1 - Raman Venkatesan, Thulasinath A1 - Smykalla, David A1 - Ploss, Bernd A1 - Wübbenhorst, Michael A1 - Gerhard, Reimund T1 - Non-linear dielectric spectroscopy for detecting and evaluating structure-property relations in a P(VDF-TrFE-CFE) relaxor-ferroelectric terpolymer JF - Applied physics : A, Materials science & processing N2 - Non-linear dielectric spectroscopy (NLDS) is employed as an effective tool to study relaxation processes and phase transitions of a poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) relaxor-ferroelectric (R-F) terpolymer in detail. Measurements of the non-linear dielectric permittivity epsilon 2 ' reveal peaks at 30 and 80 degrees C that cannot be identified in conventional dielectric spectroscopy. By combining the results from NLDS experiments with those from other techniques such as thermally stimulated depolarization and dielectric-hysteresis studies, it is possible to explain the processes behind the additional peaks. The former peak, which is associated with the mid-temperature transition, is found in all other vinylidene fluoride-based polymers and may help to understand the non-zero epsilon 2 ' values that are detected on the paraelectric phase of the terpolymer. The latter peak can also be observed during cooling of P(VDF-TrFE) copolymer samples at 100 degrees C and is due to conduction and space-charge polarization as a result of the accumulation of real charges at the electrode-sample interface. KW - Non-linear dielectric spectroscopy KW - P(VDF-TrFE-CFE) KW - Relaxor-ferroelectric polymer KW - Dielectric hysteresis KW - Curie-transition KW - Mid-temperature transition Y1 - 2021 U6 - https://doi.org/10.1007/s00339-021-04876-0 SN - 0947-8396 SN - 1432-0630 VL - 127 IS - 10 PB - Springer CY - Berlin ; Heidelberg ; New York ER -