TY - JOUR A1 - Wiesner, Karoline A1 - Ladyman, James T1 - Complex systems are always correlated but rarely information processing JF - Journal of physics. Complexity N2 - 'Complex systems are information processors' is a statement that is frequently made. Here we argue for the distinction between information processing-in the sense of encoding and transmitting a symbolic representation-and the formation of correlations (pattern formation/self-organisation). The study of both uses tools from information theory, but the purpose is very different in each case: explaining the mechanisms and understanding the purpose or function in the first case, versus data analysis and correlation extraction in the latter. We give examples of both and discuss some open questions. The distinction helps focus research efforts on the relevant questions in each case. KW - correlations KW - information theory KW - complex systems KW - information KW - processing KW - self-organisation Y1 - 2021 U6 - https://doi.org/10.1088/2632-072X/ac371c SN - 2632-072X VL - 2 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Raman Venkatesan, Thulasinath A1 - Wübbenhorst, Michael A1 - Gerhard, Reimund T1 - Structure-property relationships in three-phase relaxor-ferroelectric terpolymers JF - Ferroelectrics N2 - Poly(vinylidenefluoride-trifluoroethylene)-based (P(VDF-TrFE)-based) terpolymers represent a new class of electroactive polymer materials that are relaxor-ferroelectric (RF) polymers and that offer unique and attractive property combinations in comparison with conventional ferroelectric polymers. The RF state is achieved by introducing a fluorine-containing termonomer as a "defect" into the ferroelectric P(VDF-TrFE) copolymer, which reduces the interaction between the VDF/TrFE dipoles. The resulting terpolymer exhibits a low Curie transition temperature and small remanent and coercive fields yielding a slim hysteresis loop that is typical for RF materials. Though the macroscopic behavior is similar to RF ceramics, the mechanisms of relaxor ferroelectricity in semi-crystalline polymers are different and not fully understood yet. Structure-property relationships play an important role in RF terpolymers, as they govern the final RF properties. Hence, a review of important characteristics, previous studies and relevant developments of P(VDF-TrFE)-based terfluoropolymers with either chlorofluoroethylene (CFE) or chlorotrifluoroethylene (CTFE) as the termonomer is deemed useful. The role of the termonomer and of its composition, as well as the effects of the processing conditions on the semi-crystalline structure which in turn affects the final RF properties are discussed in detail. In addition, the presence of noteworthy transition(s) in the mid-temperature range and the influence of preparation conditions on those transitions are reviewed. A better understanding of the fundamental aspects affecting the semi-crystalline structures will help to elucidate the nature of RF activity in VDF-based terpolymers and also help to further improve their applications-relevant electroactive properties. KW - Relaxor-ferroelectric (RF) fluoropolymers KW - structure-property KW - relationships KW - Curie transition KW - dielectric hysteresis KW - thermal KW - processing KW - mid-temperature transition(s) Y1 - 2022 U6 - https://doi.org/10.1080/00150193.2021.2014260 SN - 0015-0193 SN - 1563-5112 VL - 586 IS - 1 SP - 60 EP - 81 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -