TY - JOUR A1 - Dietrich, Tim A1 - Hinderer, Tanja A1 - Samajdar, Anuradha T1 - Interpreting binary neutron star mergers BT - describing the binary neutron star dynamics, modelling gravitational waveforms, and analyzing detections JF - General relativity and gravitation : GRG journal N2 - Gravitational waves emitted from the coalescence of neutron star binaries open a new window to probe matter and fundamental physics in unexplored, extreme regimes. To extract information about the supranuclear matter inside neutron stars and the properties of the compact binary systems, robust theoretical prescriptions are required. We give an overview about general features of the dynamics and the gravitational wave signal during the binary neutron star coalescence. We briefly describe existing analytical and numerical approaches to investigate the highly dynamical, strong-field region during the merger. We review existing waveform approximants and discuss properties and possible advantages and shortcomings of individual waveform models, and their application for real gravitational-wave data analysis. KW - gravitational waves KW - neutron stars KW - equation of state KW - tidal effects Y1 - 2021 U6 - https://doi.org/10.1007/s10714-020-02751-6 SN - 0001-7701 SN - 1572-9532 VL - 53 IS - 3 PB - Springer Science + Business Media B.V. CY - New York, NY [u.a.] ER - TY - JOUR A1 - Emma, Mattia A1 - Schianchi, Federico A1 - Pannarale, Francesco A1 - Sagun, Violetta A1 - Dietrich, Tim T1 - Numerical simulations of dark matter admixed neutron star binaries JF - Particles N2 - Multi-messenger observations of compact binary mergers provide a new way to constrain the nature of dark matter that may accumulate in and around neutron stars. In this article, we extend the infrastructure of our numerical-relativity code BAM to enable the simulation of neutron stars that contain an additional mirror dark matter component. We perform single star tests to verify our code and the first binary neutron star simulations of this kind. We find that the presence of dark matter reduces the lifetime of the merger remnant and favors a prompt collapse to a black hole. Furthermore, we find differences in the merger time for systems with the same total mass and mass ratio, but different amounts of dark matter. Finally, we find that electromagnetic signals produced by the merger of binary neutron stars admixed with dark matter are very unlikely to be as bright as their dark matter-free counterparts. Given the increased sensitivity of multi-messenger facilities, our analysis gives a new perspective on how to probe the presence of dark matter. KW - numerical relativity KW - dark matter KW - neutron stars KW - equation of state; KW - gravitational-wave astronomy KW - multi-messenger astrophysics Y1 - 2022 U6 - https://doi.org/10.3390/particles5030024 SN - 2571-712X VL - 5 IS - 3 SP - 273 EP - 286 PB - MDPI CY - Basel ER -