TY - GEN A1 - Benini, Marco A1 - Schenkel, Alexander T1 - Quantum field theories on categories fibered in groupoids T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We introduce an abstract concept of quantum field theory on categories fibered in groupoids over the category of spacetimes. This provides us with a general and flexible framework to study quantum field theories defined on spacetimes with extra geometric structures such as bundles, connections and spin structures. Using right Kan extensions, we can assign to any such theory an ordinary quantum field theory defined on the category of spacetimes and we shall clarify under which conditions it satisfies the axioms of locally covariant quantum field theory. The same constructions can be performed in a homotopy theoretic framework by using homotopy right Kan extensions, which allows us to obtain first toy-models of homotopical quantum field theories resembling some aspects of gauge theories. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 895 KW - C-asterisk-algebra KW - observables KW - covariance KW - locality Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431541 SN - 1866-8372 IS - 895 ER - TY - GEN A1 - Clusella, Pau A1 - Politi, Antonio A1 - Rosenblum, Michael T1 - A minimal model of self-consistent partial synchrony T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 890 KW - synchronization KW - collective dynamics KW - coupled oscillators Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436266 SN - 1866-8372 IS - 890 ER - TY - GEN A1 - Totz, Sonja Juliana A1 - Löber, Jakob A1 - Totz, Jan Frederik A1 - Engel, Harald T1 - Control of transversal instabilities in reaction-diffusion systems T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh-Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 962 KW - traveling waves KW - control KW - transversal instabilities Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469762 SN - 1866-8372 IS - 962 ER - TY - GEN A1 - Schaal, Frederik A1 - Rutloh, Michael A1 - Weidenfeld, Susanne A1 - Stumpe, Joachim A1 - Michler, Peter A1 - Pruss, Christof A1 - Osten, Wolfgang T1 - Optically addressed modulator for tunable spatial polarization control T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We present an optically addressed non-pixelated spatial light modulator. The system is based on reversible photoalignment of a LC cell using a red light sensitive novel azobenzene photoalignment layer. It is an electrode-free device that manipulates the liquid crystal orientation and consequently the polarization via light without artifacts caused by electrodes. The capability to miniaturize the spatial light modulator allows the integration into a microscope objective. This includes a miniaturized 200 channel optical addressing system based on a VCSEL array and hybrid refractive-diffractive beam shapers. As an application example, the utilization as a microscope objective integrated analog phase contrast modulator is shown. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1001 KW - nematic liquid crystals KW - command surfaces KW - light modulator KW - alignment KW - films KW - polymer Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446263 SN - 1866-8372 IS - 1001 SP - 28119 EP - 28130 ER - TY - GEN A1 - Ślęzak, Jakub A1 - Metzler, Ralf A1 - Magdziarz, Marcin T1 - Codifference can detect ergodicity breaking and non-Gaussianity T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We show that the codifference is a useful tool in studying the ergodicity breaking and non-Gaussianity properties of stochastic time series. While the codifference is a measure of dependence that was previously studied mainly in the context of stable processes, we here extend its range of applicability to random-parameter and diffusing-diffusivity models which are important in contemporary physics, biology and financial engineering. We prove that the codifference detects forms of dependence and ergodicity breaking which are not visible from analysing the covariance and correlation functions. We also discuss a related measure of dispersion, which is a nonlinear analogue of the mean squared displacement. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 748 KW - diffusion KW - anomalous diffusion KW - stochastic time series Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436178 IS - 748 ER - TY - GEN A1 - Devchand, Chandrashekar A1 - Nuyts, Jean A1 - Weingart, Gregor T1 - Matryoshka of special democratic forms T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Special p-forms are forms which have components fµ1…µp equal to +1, -1 or 0 in some orthonormal basis. A p-form ϕ ∈ � pRd is called democratic if the set of nonzero components {ϕμ1...μp} is symmetric under the transitive action of a subgroup of O(d,Z) on the indices {1, . . . , d}. Knowledge of these symmetry groups allows us to define mappings of special democratic p-forms in d dimensions to special democratic P-forms in D dimensions for successively higher P = p and D = d. In particular, we display a remarkable nested structure of special forms including a U(3)-invariant 2-form in six dimensions, a G2-invariant 3-form in seven dimensions, a Spin(7)-invariant 4-form in eight dimensions and a special democratic 6-form O in ten dimensions. The latter has the remarkable property that its contraction with one of five distinct bivectors, yields, in the orthogonal eight dimensions, the Spin(7)-invariant 4-form. We discuss various properties of this ten dimensional form. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 841 KW - commutator subgroup KW - transitive action KW - cycle decomposition KW - democratic form KW - special holonomy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429002 SN - 1866-8372 IS - 841 SP - 545 EP - 562 ER - TY - GEN A1 - Cestnik, Rok A1 - Rosenblum, Michael T1 - Reconstructing networks of pulse-coupled oscillators from spike trains T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We present an approach for reconstructing networks of pulse-coupled neuronlike oscillators from passive observation of pulse trains of all nodes. It is assumed that units are described by their phase response curves and that their phases are instantaneously reset by incoming pulses. Using an iterative procedure, we recover the properties of all nodes, namely their phase response curves and natural frequencies, as well as strengths of all directed connections. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 760 KW - partial synchronization KW - neuronal connectivity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436285 SN - 1866-8372 IS - 760 ER - TY - GEN A1 - Böckmann, Christine A1 - Osterloh, Lukas T1 - Runge-Kutta type regularization method for inversion of spheroidal particle distribution from limited optical data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Runge-Kutta type regularization method was recently proposed as a potent tool for the iterative solution of nonlinear ill-posed problems. In this paper we analyze the applicability of this regularization method for solving inverse problems arising in atmospheric remote sensing, particularly for the retrieval of spheroidal particle distribution. Our numerical simulations reveal that the Runge-Kutta type regularization method is able to retrieve two-dimensional particle distributions using optical backscatter and extinction coefficient profiles, as well as depolarization information. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 907 KW - inverse ill-posed problem KW - integral equation KW - laser remote sensing KW - inverse scattering KW - aerosol size distribution KW - 65R32 KW - 47A52 KW - 65R20 KW - 78A46 KW - iterative regularization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441200 SN - 1866-8372 IS - 907 SP - 150 EP - 165 ER - TY - GEN A1 - Young, Linda A1 - Ueda, Kiyoshi A1 - Gühr, Markus A1 - Bucksbaum, Philip H. A1 - Simon, Marc A1 - Mukamel, Shaul A1 - Rohringer, Nina A1 - Prince, Kevin C. A1 - Masciovecchio, Claudio A1 - Meyer, Michael A1 - Rudenko, Artem A1 - Rolles, Daniel A1 - Bostedt, Christoph A1 - Fuchs, Matthias A1 - Reis, David A. A1 - Santra, Robin A1 - Kapteyn, Henry A1 - Murnane, Margaret A1 - Ibrahim, Heide A1 - Légaré, François A1 - Vrakking, Marc A1 - Isinger, Marcus A1 - Kroon, David A1 - Gisselbrecht, Mathieu A1 - L'Huillier, Anne A1 - Wörner, Hans Jakob A1 - Leone, Stephen R. T1 - Roadmap of ultrafast x-ray atomic and molecular physics T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm−2) of x-rays at wavelengths down to ~1 Ångstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 Ångstroms) and the bond length in methane of ~1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 668 KW - ultrafast molecular dynamics KW - x-ray spectroscopies and phenomena KW - table-top sources KW - x-ray free-electron lasers KW - attosecond phenomena Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424238 SN - 1866-8372 IS - 668 ER - TY - GEN A1 - Krapf, Diego A1 - Marinari, Enzo A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Xu, Xinran A1 - Squarcini, Alessio T1 - Power spectral density of a single Brownian trajectory BT - what one can and cannot learn from it T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The power spectral density (PSD) of any time-dependent stochastic processX (t) is ameaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X-t over an infinitely large observation timeT, that is, it is defined as an ensemble-averaged property taken in the limitT -> infinity. Alegitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation timeT. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is afluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 655 KW - power spectral density KW - single-trajectory analysis KW - probability density function KW - exact results Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424296 SN - 1866-8372 IS - 655 ER -