TY - THES A1 - Knigge, Xenia T1 - Einzelmolekül-Manipulation mittels Nano-Elektroden und Dielektrophorese T1 - Single molecule manipulation using nano-electrodes and dielectrophoresis N2 - In dieser Arbeit wurden Nano-Elektroden-Arrays zur Einzel-Objekt-Immobilisierung mittels Dielektrophorese verwendet. Hierbei wurden fluoreszenzmarkierte Nano-Sphären als Modellsystem untersucht und die gewonnenen Ergebnisse auf biologische Proben übertragen. Die Untersuchungen in Kombination mit verschiedenen Elektrodenlayouts führten zu einer deterministischen Vereinzelung der Nano-Sphären ab einem festen Größenverhältnis zwischen Nano-Sphäre und Durchmesser der Elektrodenspitzen. An den Proteinen BSA und R-PE konnte eine dielektrophoretische Immobilisierung ebenfalls demonstriert und R-PE Moleküle zur Vereinzelung gebracht werden. Hierfür war neben einem optimierten Elektrodenlayout, das durch Feldsimulationen den Feldgradienten betreffend gesucht wurde, eine Optimierung der Feldparameter, insbesondere von Spannung und Frequenz, erforderlich. Neben der Dielektrophorese erfolgten auch Beobachtungen anderer Effekte des elektrischen Feldes, wie z.B. Elektrolyse an Nano-Elektroden und Strömungen über dem Elektroden-Array, hervorgerufen durch Joulesche Wärme und AC-elektroosmotischen Fluss. Zudem konnte Dielektrophorese an Silberpartikeln beobachtet werden und mittels Fluoreszenz-, Atom-Kraft-, Raster-Elektronen-Mikroskopie und energiedispersiver Röntgenspektroskopie untersucht werden. Schließlich wurden die verwendeten Objektive und Kameras auf ihre Lichtempfindlichkeit hin analysiert, so dass die Vereinzelung von Biomolekülen an Nano-Elektroden nachweisbar war. Festzuhalten bleibt also, dass die Vereinzelung von Nano-Objekten und Biomolekülen an Nano-Elektroden-Arrays gelungen ist. Durch den parallelen Ansatz erlaubt dies, Aussagen über das Verhalten von Einzelmolekülen mit guter Statistik zu treffen. N2 - In this work, nanoelectrode arrays were used for single object immobilization by dielectrophoresis. Fluorescently labeled nanospheres were used as a model system and the results were transferred to biological samples. The experiments in combination with different electrode layouts led to a deterministic singling of the nanospheres for a fixed size ratio between nanosphere and tipdiameter. Dielectrophoretic immobilization could also be demonstrated for the proteins BSA and R-PE, while R-PE molecules were even immobilized as single objects. For this purpose, in addition to an optimized electrode layout, which was searched by numerical field calculations, an optimization of the field parameters was required, in particular of voltage and frequency. Besides dielectrophoresis, observations of other effects were made, e.g. electrolysis at nanoelectrodes and fluid flows caused by Joule heating and AC-electroosmotic flow. In addition, dielectrophoresis was observed on silver nanoparticles, which was examined by fluorescence-, atomic force-, scanning electron microscopy and energy dispersive X-ray spectroscopy. Finally, the objectives and cameras were analyzed for their photosensitivity so that the singling of biomolecules on nanoelectrodes became detectable. The successful singling of nanoobjects and biomolecules on nanoelectrodes has been shown in a parallel approach so that it is possible to make statements about the behavior of single molecules with good statistics. KW - Dielektrophorese KW - Einzelmolekül-Biosensor KW - parallele Immobilisierung von Biomolekülen KW - R-PE KW - Polystyrol Nano-Sphären KW - Nano-Elektroden KW - 3D-Feldsimulationen KW - Einzel-Objekt-Nachweis KW - Fluoreszenz-Mikroskopie KW - REM KW - dielectrophoresis KW - single-molecule biosensor KW - parallel immobilization of biomolecules KW - R-PE KW - polystyrene nano-spheres KW - nano-electrodes KW - 3D field calculations KW - single-object detection KW - fluorescence microscopy KW - SEM Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-443137 ER - TY - THES A1 - Müller, Jirka T1 - Untersuchungen zum flow-Erleben bei Experimenten als physikalische Lerngelegenheit N2 - In der vorliegenden Arbeit wird untersucht, in wie weit physikalische Experimente ein flow-Erleben bei Lernenden hervorrufen. Flow-Erleben wird als Motivationsursache gesehen und soll den Weg zu Freude und Glück darstellen. Insbesondere wegen dem oft zitierten Fachkräftemangel in naturwissenschaftlichen und technischen Berufen ist eine Motivationssteigerung in naturwissenschaftlichen Unterrichtsfächern wichtig. Denn trotz Leistungssteigerungen in internationalen Vergleichstests möchten in Deutschland deutlich weniger Schüler*innen einen solchen Beruf ergreifen als in anderen Industriestaaten. Daher gilt es, möglichst früh Schüler*innen für naturwissenschaftlich-technische Fächer zu begeistern und insbesondere im regelrecht verhassten Physikunterricht flow-Erleben zu erzeugen. Im Rahmen dieser Arbeit wird das flow-Erleben von Studierenden in klassischen Laborexperimenten und FELS (Forschend-Entdeckendes Lernen mit dem Smartphone) als Lernumgebung untersucht. FELS ist eine an die Lebenswelt der Schüler*innen angepasste Lernumgebung, in der sie mit Smartphones ihre eigene Lebenswelt experimentell untersuchen. Es zeigt sich, dass sowohl klassische Laborexperimente als auch in der Lebenswelt durchgeführte, smartphonebasierte Experimente flow-Erleben erzeugen. Allerdings verursachen die smartphonebasierten Experimente kaum Stressgefühle. Die in dieser Arbeit herausgefundenen Ergebnisse liefern einen ersten Ansatz, der durch Folgestudien erweitert werden sollte. N2 - The present work examines to what extent physical experiments induce a flow-experience in students. Experiencing flow is seen as a source of motivation and should represent the path to joy and happiness. In particular, because of the often-cited shortage of employees in the natural sciences and technical professions, increasing motivation in natural sciences subjects is important. Because despite performance increases in international comparative tests, significantly fewer students in Germany want to take up such a profession than in other industrialized countries. It is therefore important to get students enthusiastic about scientific and technical subjects as early as possible and, in particular, to create a flow experience in the downright hated physics class. In the context of this work, the flow-experience of students is examined as a learning environment in classic laboratory experiments and FELS (inquiry-based learning with the smartphone, based on the German term: Forschend-Entdeckendes Lernen mit dem Smartphone). FELS is a learning environment adapted to the students' living environment, in which they use smartphones to experimentally examine their own living environment. It turns out that both classic laboratory experiments and smartphone-based experiments create flow-experiences. However, the smartphone-based experiments hardly cause any feelings of stress. The results found in this work provide a first approach, which should be expanded through follow-up studies. T2 - Examining the flow-experience in experiments as a physical learning opportunity KW - Flow KW - Smartphone KW - Experimente KW - Physikdidaktik KW - FELS KW - Lernumgebung KW - blended learning KW - Forschend Entdeckendes Lernen KW - inquiry based learning KW - physics education KW - learning environment KW - experiment Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482879 ER -