TY - JOUR A1 - Seroussi, Helene A1 - Nowicki, Sophie A1 - Payne, Antony J. A1 - Goelzer, Heiko A1 - Lipscomb, William H. A1 - Abe-Ouchi, Ayako A1 - Agosta, Cecile A1 - Albrecht, Torsten A1 - Asay-Davis, Xylar A1 - Barthel, Alice A1 - Calov, Reinhard A1 - Cullather, Richard A1 - Dumas, Christophe A1 - Galton-Fenzi, Benjamin K. A1 - Gladstone, Rupert A1 - Golledge, Nicholas R. A1 - Gregory, Jonathan M. A1 - Greve, Ralf A1 - Hattermann, Tore A1 - Hoffman, Matthew J. A1 - Humbert, Angelika A1 - Huybrechts, Philippe A1 - Jourdain, Nicolas C. A1 - Kleiner, Thomas A1 - Larour, Eric A1 - Leguy, Gunter R. A1 - Lowry, Daniel P. A1 - Little, Chistopher M. A1 - Morlighem, Mathieu A1 - Pattyn, Frank A1 - Pelle, Tyler A1 - Price, Stephen F. A1 - Quiquet, Aurelien A1 - Reese, Ronja A1 - Schlegel, Nicole-Jeanne A1 - Shepherd, Andrew A1 - Simon, Erika A1 - Smith, Robin S. A1 - Straneo, Fiammetta A1 - Sun, Sainan A1 - Trusel, Luke D. A1 - Van Breedam, Jonas A1 - van de Wal, Roderik S. W. A1 - Winkelmann, Ricarda A1 - Zhao, Chen A1 - Zhang, Tong A1 - Zwinger, Thomas T1 - ISMIP6 Antarctica BT - a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6 :1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica. Y1 - 2020 U6 - https://doi.org/10.5194/tc-14-3033-2020 SN - 1994-0416 SN - 1994-0424 VL - 14 IS - 9 SP - 3033 EP - 3070 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Reese, Ronja A1 - Levermann, Anders A1 - Albrecht, Torsten A1 - Seroussi, Helene A1 - Winkelmann, Ricarda T1 - The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams are the major reasons for currently observed mass loss from Antarctica and are expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects - initMIP, LARMIP-2 and ISMIP6 - conducted with a range of ice sheet models, the projected 21st century sea level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1:4 to 4:0 cm of sea level equivalent in simulations in which ISMIP6 ocean forcing drives the PICO ocean box model where parameter tuning leads to a comparably low sub-shelf melt sensitivity and in which no surface forcing is applied. This is opposed to a likely range of 9:1 to 35:8 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity, even though both projects use forcing from climate models and melt rates are calibrated with previous oceanographic studies. Furthermore, using two initial states, one with a previous historic simulation from 1850 to 2014 and one starting from a steady state, we show that while differences between the ice sheet configurations in 2015 seem marginal at first sight, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by 5% to 50 %. Hindcasting past ice sheet changes with numerical models would thus provide valuable tools to better constrain projections. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice dynamic response for future sea level projections. Y1 - 2020 U6 - https://doi.org/10.5194/tc-14-3097-2020 SN - 1994-0416 SN - 1994-0424 VL - 14 IS - 9 SP - 3097 EP - 3110 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Albrecht, Torsten A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) BT - part 2: parameter ensemble analysis JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (approximate to 210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation-age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model-data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4 +/- 4.1m (or 6.5 +/- 2.0 x 10(6) km(3)), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet. Y1 - 2020 U6 - https://doi.org/10.5194/tc-14-633-2020 SN - 1994-0416 SN - 1994-0424 VL - 14 IS - 2 SP - 633 EP - 656 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Garbe, Julius A1 - Albrecht, Torsten A1 - Levermann, Anders A1 - Donges, Jonathan A1 - Winkelmann, Ricarda T1 - The hysteresis of the Antarctic Ice Sheet JF - Nature : the international weekly journal of science N2 - More than half of Earth's freshwater resources are held by the Antarctic Ice Sheet, which thus represents by far the largest potential source for global sea-level rise under future warming conditions(1). Its long-term stability determines the fate of our coastal cities and cultural heritage. Feedbacks between ice, atmosphere, ocean, and the solid Earth give rise to potential nonlinearities in its response to temperature changes. So far, we are lacking a comprehensive stability analysis of the Antarctic Ice Sheet for different amounts of global warming. Here we show that the Antarctic Ice Sheet exhibits a multitude of temperature thresholds beyond which ice loss is irreversible. Consistent with palaeodata(2)we find, using the Parallel Ice Sheet Model(3-5), that at global warming levels around 2 degrees Celsius above pre-industrial levels, West Antarctica is committed to long-term partial collapse owing to the marine ice-sheet instability. Between 6 and 9 degrees of warming above pre-industrial levels, the loss of more than 70 per cent of the present-day ice volume is triggered, mainly caused by the surface elevation feedback. At more than 10 degrees of warming above pre-industrial levels, Antarctica is committed to become virtually ice-free. The ice sheet's temperature sensitivity is 1.3 metres of sea-level equivalent per degree of warming up to 2 degrees above pre-industrial levels, almost doubling to 2.4 metres per degree of warming between 2 and 6 degrees and increasing to about 10 metres per degree of warming between 6 and 9 degrees. Each of these thresholds gives rise to hysteresis behaviour: that is, the currently observed ice-sheet configuration is not regained even if temperatures are reversed to present-day levels. In particular, the West Antarctic Ice Sheet does not regrow to its modern extent until temperatures are at least one degree Celsius lower than pre-industrial levels. Our results show that if the Paris Agreement is not met, Antarctica's long-term sea-level contribution will dramatically increase and exceed that of all other sources.
Modelling shows that the Antarctic Ice Sheet exhibits multiple temperature thresholds beyond which ice loss would become irreversible, and once melted, the ice sheet can regain its previous mass only if the climate cools well below pre-industrial temperatures. Y1 - 2020 U6 - https://doi.org/10.1038/s41586-020-2727-5 SN - 0028-0836 SN - 1476-4687 VL - 585 IS - 7826 SP - 538 EP - 544 PB - Macmillan Publishers Limited CY - Berlin ER -