TY - JOUR A1 - Krämer, Hauke Kai A1 - Marwan, Norbert T1 - Border effect corrections for diagonal line based recurrence quantification analysis measures JF - Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics N2 - Recurrence Quantification Analysis (RQA) defines a number of quantifiers, which base upon diagonal line structures in the recurrence plot (RP). Due to the finite size of an RP, these lines can be cut by the borders of the RP and, thus, bias the length distribution of diagonal lines and, consequently, the line based RQA measures. In this letter we investigate the impact of the mentioned border effects and of the thickening of diagonal lines in an RP (caused by tangential motion) on the estimation of the diagonal line length distribution, quantified by its entropy. Although a relation to the Lyapunov spectrum is theoretically expected, the mentioned entropy yields contradictory results in many studies. Here we summarize correction schemes for both, the border effects and the tangential motion and systematically compare them to methods from the literature. We show that these corrections lead to the expected behavior of the diagonal line length entropy, in particular meaning zero values in case of a regular motion and positive values for chaotic motion. Moreover, we test these methods under noisy conditions, in order to supply practical tools for applied statistical research. KW - Recurrence plots KW - Recurrence quantification analysis KW - Shannon entropy KW - Dynamical invariants Y1 - 2019 U6 - https://doi.org/10.1016/j.physleta.2019.125977 SN - 0375-9601 SN - 1873-2429 VL - 383 IS - 34 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Agarwal, Ankit A1 - Guntu, Ravikumar A1 - Banerjee, Abhirup A1 - Gadhawe, Mayuri Ashokrao A1 - Marwan, Norbert T1 - A complex network approach to study the extreme precipitation patterns in a river basin JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes. Y1 - 2022 U6 - https://doi.org/10.1063/5.0072520 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 1 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Clark, Oliver J. A1 - Freyse, Friedrich A1 - Yashina, L. V. A1 - Rader, Oliver A1 - Sanchez-Barriga, Jaime T1 - Robust behavior and spin-texture stability of the topological surface state in Bi2Se3 upon deposition of gold JF - npj quantum materials N2 - The Dirac point of a topological surface state (TSS) is protected against gapping by time-reversal symmetry. Conventional wisdom stipulates, therefore, that only through magnetisation may a TSS become gapped. However, non-magnetic gaps have now been demonstrated in Bi2Se3 systems doped with Mn or In, explained by hybridisation of the Dirac cone with induced impurity resonances. Recent photoemission experiments suggest that an analogous mechanism applies even when Bi2Se3 is surface dosed with Au. Here, we perform a systematic spin- and angle-resolved photoemission study of Au-dosed Bi2Se3. Although there are experimental conditions wherein the TSS appears gapped due to unfavourable photoemission matrix elements, our photon-energy-dependent spectra unambiguously demonstrate the robustness of the Dirac cone against high Au coverage. We further show how the spin textures of the TSS and its accompanying surface resonances remain qualitatively unchanged following Au deposition, and discuss the mechanism underlying the suppression of the spectral weight. KW - Electronic properties and materials KW - Topological matter Y1 - 2022 U6 - https://doi.org/10.1038/s41535-022-00443-9 SN - 2397-4648 VL - 7 IS - 1 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Padash, Amin A1 - Sandev, Trifce A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Chechkin, Aleksei T1 - Asymmetric Levy flights are more efficient in random search JF - Fractal and fractional N2 - We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity. KW - asymmetric Levy flights KW - first-arrival density KW - search efficiency Y1 - 2022 U6 - https://doi.org/10.3390/fractalfract6050260 SN - 2504-3110 VL - 6 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Kumar, Aanjaneya T1 - First-passage times of multiple diffusing particles with reversible target-binding kinetics JF - Journal of physics : A, Mathematical and theoretical N2 - We investigate a class of diffusion-controlled reactions that are initiated at the time instance when a prescribed number K among N particles independently diffusing in a solvent are simultaneously bound to a target region. In the irreversible target-binding setting, the particles that bind to the target stay there forever, and the reaction time is the Kth fastest first-passage time to the target, whose distribution is well-known. In turn, reversible binding, which is common for most applications, renders theoretical analysis much more challenging and drastically changes the distribution of reaction times. We develop a renewal-based approach to derive an approximate solution for the probability density of the reaction time. This approximation turns out to be remarkably accurate for a broad range of parameters. We also analyze the dependence of the mean reaction time or, equivalently, the inverse reaction rate, on the main parameters such as K, N, and binding/unbinding constants. Some biophysical applications and further perspectives are briefly discussed. KW - first-passage time KW - diffusion-controlled reactions KW - reversible binding KW - extreme statistics Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac7e91 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 32 PB - IOP Publ. CY - Bristol ER - TY - JOUR A1 - Kölsch, Maximilian A1 - Dietrich, Tim A1 - Ujevic, Maximiliano A1 - Brügmann, Bernd T1 - Investigating the mass-ratio dependence of the prompt-collapse threshold with numerical-relativity simulations JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - The next observing runs of advanced gravitational-wave detectors will lead to a variety of binary neutron star detections and numerous possibilities for multimessenger observations of binary neutron star systems. In this context a clear understanding of the merger process and the possibility of prompt black hole formation after merger is important, as the amount of ejected material strongly depends on the merger dynamics. These dynamics are primarily affected by the total mass of the binary, however, the mass ratio also influences the postmerger evolution. To determine the effect of the mass ratio, we investigate the parameter space around the prompt-collapse threshold with a new set of fully relativistic simulations. The simulations cover three equations of state and seven mass ratios in the range of 1.0 <= q <= 1.75, with five to seven simulations of binary systems of different total mass in each case. The threshold mass is determined through an empirical relation based on the collapse time, which allows us to investigate effects of the mass ratio on the threshold mass and also on the properties of the remnant system. Furthermore, we model effects of mass ratio and equation of state on tidal parameters of threshold configurations. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.106.044026 SN - 2470-0010 SN - 2470-0029 VL - 106 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Emma, Mattia A1 - Schianchi, Federico A1 - Pannarale, Francesco A1 - Sagun, Violetta A1 - Dietrich, Tim T1 - Numerical simulations of dark matter admixed neutron star binaries JF - Particles N2 - Multi-messenger observations of compact binary mergers provide a new way to constrain the nature of dark matter that may accumulate in and around neutron stars. In this article, we extend the infrastructure of our numerical-relativity code BAM to enable the simulation of neutron stars that contain an additional mirror dark matter component. We perform single star tests to verify our code and the first binary neutron star simulations of this kind. We find that the presence of dark matter reduces the lifetime of the merger remnant and favors a prompt collapse to a black hole. Furthermore, we find differences in the merger time for systems with the same total mass and mass ratio, but different amounts of dark matter. Finally, we find that electromagnetic signals produced by the merger of binary neutron stars admixed with dark matter are very unlikely to be as bright as their dark matter-free counterparts. Given the increased sensitivity of multi-messenger facilities, our analysis gives a new perspective on how to probe the presence of dark matter. KW - numerical relativity KW - dark matter KW - neutron stars KW - equation of state; KW - gravitational-wave astronomy KW - multi-messenger astrophysics Y1 - 2022 U6 - https://doi.org/10.3390/particles5030024 SN - 2571-712X VL - 5 IS - 3 SP - 273 EP - 286 PB - MDPI CY - Basel ER - TY - JOUR A1 - Dudi, Reetika A1 - Adhikari, Ananya A1 - Brügmann, Bernd A1 - Dietrich, Tim A1 - Hayashi, Kota A1 - Kawaguchi, Kyohei A1 - Kiuchi, Kenta A1 - Kyutoku, Koutarou A1 - Shibata, Masaru A1 - Tichy, Wolfgang T1 - Investigating GW190425 with numerical-relativity simulations JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - The third observing run of the LIGO-Virgo Collaboration has resulted in many gravitational wave detections, including the binary neutron star merger GW190425. However, none of these events have been accompanied with an electromagnetic transient found during extensive follow-up searches. In this article, we perform new numerical-relativity simulations of binary neutron star and black hole-neutron star systems that have a chirp mass consistent with GW190425. Assuming that the GW190425's sky location was covered with sufficient accuracy during the electromagnetic follow-up searches, we investigate whether the nondetection of the kilonova is compatible with the source parameters estimated through the gravitational -wave analysis and how one can use this information to place constraints on the properties of the system. Our simulations suggest that GW190425 is incompatible with an unequal mass binary neutron star merger with a mass ratio q < 0.8 when considering stiff or moderately stiff equations of state if the binary was face on and covered by the observation. Our analysis shows that a detailed observational result for kilonovae will be useful to constrain the mass ratio of binary neutron stars in future events. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.106.084039 SN - 2470-0010 SN - 2470-0029 VL - 106 IS - 8 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gieg, Henrique A1 - Schianchi, Federico A1 - Dietrich, Tim A1 - Ujevic, Maximiliano T1 - Incorporating a Radiative Hydrodynamics Scheme in the Numerical-Relativity Code BAM JF - Universe : open access journal N2 - To study binary neutron star systems and to interpret observational data such as gravitational-wave and kilonova signals, one needs an accurate description of the processes that take place during the final stages of the coalescence, for example, through numerical-relativity simulations. In this work, we present an updated version of the numerical-relativity code BAM in order to incorporate nuclear-theory-based equations of state and a simple description of neutrino interactions through a neutrino leakage scheme. Different test simulations, for stars undergoing a neutrino-induced gravitational collapse and for binary neutron stars systems, validate our new implementation. For the binary neutron stars systems, we show that we can evolve stably and accurately distinct microphysical models employing the different equations of state: SFHo, DD2, and the hyperonic BHB Lambda phi. Overall, our test simulations have good agreement with those reported in the literature. KW - numerical relativity KW - binary neutron stars KW - neutrinos KW - leakage scheme Y1 - 2022 U6 - https://doi.org/10.3390/universe8070370 SN - 2218-1997 VL - 8 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Matzka, Jürgen A1 - Siddiqui, Tarique Adnan A1 - Lilienkamp, Henning A1 - Stolle, Claudia A1 - Veliz, Oscar T1 - Quantifying solar flux and geomagnetic main field influence on the equatorial ionospheric current system at the geomagnetic observatory Huancayo JF - Journal of Atmospheric and Solar-Terrestrial Physics N2 - In order to analyse the sensitivity of the equatorial ionospheric current system, i.e. the solar quiet current system and the equatorial electrojet, to solar cycle variations and to the secular variation of the geomagnetic main field, we have analysed 51 years (1935-1985) of geomagnetic observatory data from Huancayo, Peru. This period is ideal to analyse the influence of the main field strength on the amplitude of the quiet daily variation, since the main field decreases significantly from 1935 to 1985, while the distance of the magnetic equator to the observatory remains stable. To this end, we digitised some 19 years of hourly mean values of the horizontal component (H), which have not been available digitally at the World Data Centres. Then, the sensitivity of the amplitude Ali of the quiet daily variation to both solar cycle variations (in terms of sunspot numbers and solar flux F10.7) and changes of the geomagnetic main field strength (due to secular variation) was determined. We confirm an increase of Delta H for the decreasing main field in this period, as expected from physics based models (Cnossen, 2016), but with a somewhat smaller rate of 4.4% (5.8% considering one standard error) compared with 6.9% predicted by the physics based model. KW - Magnetic field KW - Equatorial ionosphere KW - Geomagnetic secular variation KW - Solar cycle Y1 - 2017 U6 - https://doi.org/10.1016/j.jastp.2017.04.014 SN - 1364-6826 SN - 1879-1824 VL - 163 SP - 120 EP - 125 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Sandev, Trifce A1 - Tomovski, Zivorad A1 - Dubbeldam, Johan L. A. A1 - Chechkin, Aleksei V. T1 - Generalized diffusion-wave equation with memory kernel JF - Journal of physics : A, Mathematical and theoretical N2 - We study generalized diffusion-wave equation in which the second order time derivative is replaced by an integro-differential operator. It yields time fractional and distributed order time fractional diffusion-wave equations as particular cases. We consider different memory kernels of the integro-differential operator, derive corresponding fundamental solutions, specify the conditions of their non-negativity and calculate the mean squared displacement for all cases. In particular, we introduce and study generalized diffusion-wave equations with a regularized Prabhakar derivative of single and distributed orders. The equations considered can be used for modeling the broad spectrum of anomalous diffusion processes and various transitions between different diffusion regimes. KW - diffusion-wave equation KW - Mittag-Leffler function KW - anomalous diffusion Y1 - 2018 U6 - https://doi.org/10.1088/1751-8121/aaefa3 SN - 1751-8113 SN - 1751-8121 VL - 52 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Andersson, Edvin K. W. A1 - Sångeland, Christofer A1 - Berggren, Elin A1 - Johansson, Fredrik O. L. A1 - Kühn, Danilo A1 - Lindblad, Andreas A1 - Mindemark, Jonas A1 - Hahlin, Maria T1 - Early-stage decomposition of solid polymer electrolytes in Li-metal batteries JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Development of functional and stable solid polymer electrolytes (SPEs) for battery applications is an important step towards both safer batteries and for the realization of lithium-based or anode-less batteries. The interface between the lithium and the solid polymer electrolyte is one of the bottlenecks, where severe degradation is expected. Here, the stability of three different SPEs - poly(ethylene oxide) (PEO), poly(epsilon-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) - together with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, is investigated after they have been exposed to lithium metal under UHV conditions. Degradation compounds, e.g. Li-O-R, LiF and LixSyOz, are identified for all SPEs using soft X-ray photoelectron spectroscopy. A competing degradation between polymer and salt is identified in the outermost surface region (<7 nm), and is dependent on the polymer host. PTMC:LiTFSI shows the most severe decomposition of both polymer and salt followed by PCL:LiTFSI and PEO:LiTFSI. In addition, the movement of lithium species through the decomposed interface shows large variation depending on the polymer electrolyte system. Y1 - 2021 U6 - https://doi.org/10.1039/d1ta05015j SN - 2050-7488 SN - 2050-7496 VL - 9 IS - 39 SP - 22462 EP - 22471 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Sandev, Trifce A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - From continuous time random walks to the generalized diffusion equation JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - We obtain a generalized diffusion equation in modified or Riemann-Liouville form from continuous time random walk theory. The waiting time probability density function and mean squared displacement for different forms of the equation are explicitly calculated. We show examples of generalized diffusion equations in normal or Caputo form that encode the same probability distribution functions as those obtained from the generalized diffusion equation in modified form. The obtained equations are general and many known fractional diffusion equations are included as special cases. KW - continuous time random walk (CTRW) KW - generalized diffusion equation KW - Mittag-Leffler functions KW - anomalous diffusion Y1 - 2018 U6 - https://doi.org/10.1515/fca-2018-0002 SN - 1311-0454 SN - 1314-2224 VL - 21 IS - 1 SP - 10 EP - 28 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Singh, Rishu Kumar A1 - Metzler, Ralf A1 - Sandev, Trifce T1 - Resetting dynamics in a confining potential JF - Journal of physics : A, Mathematical and theoretical N2 - We study Brownian motion in a confining potential under a constant-rate resetting to a reset position x(0). The relaxation of this system to the steady-state exhibits a dynamic phase transition, and is achieved in a light cone region which grows linearly with time. When an absorbing boundary is introduced, effecting a symmetry breaking of the system, we find that resetting aids the barrier escape only when the particle starts on the same side as the barrier with respect to the origin. We find that the optimal resetting rate exhibits a continuous phase transition with critical exponent of unity. Exact expressions are derived for the mean escape time, the second moment, and the coefficient of variation (CV). KW - diffusion KW - resetting KW - barrier escape KW - first-passage Y1 - 2020 U6 - https://doi.org/10.1088/1751-8121/abc83a SN - 1751-8113 SN - 1751-8121 VL - 53 IS - 50 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Smirnov, Lev A. A1 - Bolotov, Maxim I. A1 - Osipov, Grigorij V. A1 - Pikovskij, Arkadij T1 - Disorder fosters chimera in an array of motile particles JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We consider an array of nonlocally coupled oscillators on a ring, which for equally spaced units possesses a Kuramoto-Battogtokh chimera regime and a synchronous state. We demonstrate that disorder in oscillators positions leads to a transition from the synchronous to the chimera state. For a static (quenched) disorder we find that the probability of synchrony survival depends on the number of particles, from nearly zero at small populations to one in the thermodynamic limit. Furthermore, we demonstrate how the synchrony gets destroyed for randomly (ballistically or diffusively) moving oscillators. We show that, depending on the number of oscillators, there are different scalings of the transition time with this number and the velocity of the units. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.034205 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 3 PB - American Physical Society CY - Melville, NY ER - TY - JOUR A1 - Breternitz, Joachim A1 - Schorr, Susan T1 - Symmetry relations in wurtzite nitrides and oxide nitrides and the curious case of Pmc2(1) JF - Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances N2 - Binary III-V nitrides such as AlN, GaN and InN in the wurtzite-type structure have long been considered as potent semiconducting materials because of their optoelectronic properties, amongst others. With rising concerns over the utilization of scarce elements, a replacement of the trivalent cations by others in ternary and multinary nitrides has led to the development of different variants of nitrides and oxide nitrides crystallizing in lower-symmetry variants of wurtzite. This work presents the symmetry relationships between these structural types specific to nitrides and oxide nitrides and updates some prior work on this matter. The non-existence of compounds crystallizing in Pmc2(1), formally the highest subgroup of the wurtzite type fulfilling Pauling's rules for 1:1:2 stoichiometries, has been puzzling scientists for a while; a rationalization is given, from a crystallographic basis, of why this space group is unlikely to be adopted. KW - group-subgroup relationships KW - nitride materials KW - wurtzite type Y1 - 2021 U6 - https://doi.org/10.1107/S2053273320015971 SN - 2053-2733 VL - 77 IS - 3 SP - 208 EP - 216 PB - Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Ujevic, Maximiliano A1 - Rashti, Alireza A1 - Gieg, Henrique Leonhard A1 - Tichy, Wolfgang A1 - Dietrich, Tim T1 - High-accuracy high-mass-ratio simulations for binary neutron stars and their comparison to existing waveform models JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - The subsequent observing runs of the advanced gravitational-wave detector network will likely provide us with various gravitational-wave observations of binary neutron star systems. For an accurate interpretation of these detections, we need reliable gravitational-wave models. To test and to point out how existing models could be improved, we perform a set of high-resolution numerical relativity simulations for four different physical setups with mass ratios q = 1.25, 1.50, 1.75, 2.00, and total gravitational mass M = 2.7 M???. Each configuration is simulated with five different resolutions to allow a proper error assessment. Overall, we find approximately second-order converging results for the dominant (2,2) mode, but also the subdominant (2,1), (3,3), and (4,4) modes, while generally, the convergence order reduces slightly for an increasing mass ratio. Our simulations allow us to validate waveform models, where we find generally good agreement between state-of-the-art models and our data, and to prove that scaling relations for higher modes currently employed for binary black hole waveform modeling also apply for the tidal contribution. Finally, we also test if the current NRTidal model used to describe tidal effects is a valid description for high-mass-ratio systems. We hope that our simulation results can be used to further improve and test waveform models in preparation for the next observing runs. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.106.023029 SN - 2470-0010 SN - 2470-0029 VL - 106 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gerlach, Marius A1 - Preitschopf, Tobias A1 - Karaev, Emil A1 - Quitian-Lara, Heidy Mayerly A1 - Mayer, Dennis A1 - Bozek, John A1 - Fischer, Ingo A1 - Fink, Reinhold F. T1 - Auger electron spectroscopy of fulminic acid, HCNO BT - an experimental and theoretical study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - HCNO is a molecule of considerable astrochemical interest as a precursor to prebiotic molecules. It is synthesized by preparative pyrolysis and is unstable at room temperature. Here, we investigate its spectroscopy in the soft X-ray regime at the C 1s, N 1s and O 1s edges. All 1s ionization energies are reported and X-ray absorption spectra reveal the transitions from the 1s to the pi* state. Resonant and normal Auger electron spectra for the decay of the core hole states are recorded in a hemispherical analyzer. An assignment of the experimental spectra is provided with the aid of theoretical counterparts. The latter are using a valence configuration interaction representation of the intermediate and final state energies and wavefunctions, the one-center approximation for transition rates and band shapes according to the moment theory. The computed spectra are in very good agreement with the experimental data and most of the relevant bands are assigned. Additionally, we present a simple approach to estimate relative Auger transition rates on the basis of a minimal basis representation of the molecular orbitals. We demonstrate that this provides a qualitatively good and reliable estimate for several signals in the normal and resonant Auger electron spectra which have significantly different intensities in the decay of the three core holes. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp02104h SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 25 SP - 15217 EP - 15229 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Janowski, Marcin Andrzej A1 - Zoschke, Reimo A1 - Scharff, Lars B. A1 - Jaime, Silvia Martinez A1 - Ferrari, Camilla A1 - Proost, Sebastian A1 - Xiong, Jonathan Ng Wei A1 - Omranian, Nooshin A1 - Musialak-Lange, Magdalena A1 - Nikoloski, Zoran A1 - Graf, Alexander A1 - Schoettler, Mark Aurel A1 - Sampathkumar, Arun A1 - Vaid, Neha A1 - Mutwil, Marek T1 - AtRsgA from Arabidopsis thaliana is important for maturation of the small subunit of the chloroplast ribosome JF - The plant journal N2 - Plastid ribosomes are very similar in structure and function to the ribosomes of their bacterial ancestors. Since ribosome biogenesis is not thermodynamically favorable under biological conditions it requires the activity of many assembly factors. Here we have characterized a homolog of bacterial RsgA in Arabidopsis thaliana and show that it can complement the bacterial homolog. Functional characterization of a strong mutant in Arabidopsis revealed that the protein is essential for plant viability, while a weak mutant produced dwarf, chlorotic plants that incorporated immature pre-16S ribosomal RNA into translating ribosomes. Physiological analysis of the mutant plants revealed smaller, but more numerous, chloroplasts in the mesophyll cells, reduction of chlorophyll a and b, depletion of proplastids from the rib meristem and decreased photosynthetic electron transport rate and efficiency. Comparative RNA sequencing and proteomic analysis of the weak mutant and wild-type plants revealed that various biotic stress-related, transcriptional regulation and post-transcriptional modification pathways were repressed in the mutant. Intriguingly, while nuclear- and chloroplast-encoded photosynthesis-related proteins were less abundant in the mutant, the corresponding transcripts were increased, suggesting an elaborate compensatory mechanism, potentially via differentially active retrograde signaling pathways. To conclude, this study reveals a chloroplast ribosome assembly factor and outlines the transcriptomic and proteomic responses of the compensatory mechanism activated during decreased chloroplast function. Significance Statement AtRsgA is an assembly factor necessary for maturation of the small subunit of the chloroplast ribosome. Depletion of AtRsgA leads to dwarfed, chlorotic plants, a decrease of mature 16S rRNA and smaller, but more numerous, chloroplasts. Large-scale transcriptomic and proteomic analysis revealed that chloroplast-encoded and -targeted proteins were less abundant, while the corresponding transcripts were increased in the mutant. We analyze the transcriptional responses of several retrograde signaling pathways to suggest the mechanism underlying this compensatory response. KW - ribosome assembly KW - chloroplast ribosome KW - assembly factor KW - 30S subunit KW - RsgA KW - Arabidopsis thaliana Y1 - 2018 U6 - https://doi.org/10.1111/tpj.14040 SN - 0960-7412 SN - 1365-313X VL - 96 IS - 2 SP - 404 EP - 420 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wang, Qiong A1 - Mosconi, Edoardo A1 - Wolff, Christian Michael A1 - Li, Junming A1 - Neher, Dieter A1 - De Angelis, Filippo A1 - Suranna, Gian Paolo A1 - Grisorio, Roberto A1 - Abate, Antonio T1 - Rationalizing the molecular design of hole-selective contacts to improve charge extraction in Perovskite solar cells JF - dvanced energy materials N2 - Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C-9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro-OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6%) is achieved by using the new HSMs in suitable perovskite solar cells. Time-resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro-OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS-integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro-OMeTAD. Importantly, the low-cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells. KW - hole extraction KW - hole selective materials KW - perovskite solar cells KW - sulfur KW - triple-cation perovskite Y1 - 2019 U6 - https://doi.org/10.1002/aenm.201900990 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 28 PB - Wiley-VCH CY - Weinheim ER -