TY - JOUR A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Solitary synchronization waves in distributed oscillator populations JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We demonstrate the existence of solitary waves of synchrony in one-dimensional arrays of oscillator populations with Laplacian coupling. Characterizing each community with its complex order parameter, we obtain lattice equations similar to those of the discrete nonlinear Schrodinger system. Close to full synchrony, we find solitary waves for the order parameter perturbatively, starting from the known phase compactons and kovatons; these solutions are extended numerically to the full domain of possible synchrony levels. For nonidentical oscillators, the existence of dissipative solitons is shown. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevE.98.062222 SN - 2470-0045 SN - 2470-0053 VL - 98 IS - 6 SP - 062222-1 EP - 062222-7 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Munyaev, Vyacheslav O. A1 - Smirnov, Lev A. A1 - Kostin, Vasily A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New journal of physics : the open-access journal for physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto KW - model KW - noisy systems Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab6f93 SN - 1367-2630 VL - 22 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Chimera patterns in the Kuramoto-Battogtokh model JF - Journal of physics : A, Mathematical and theoretical N2 - Kuramoto and Battogtokh (2002 Nonlinear Phenom. Complex Syst. 5 380) discovered chimera states represented by stable coexisting synchrony and asynchrony domains in a lattice of coupled oscillators. After a reformulation in terms of a local order parameter, the problem can be reduced to partial differential equations. We find uniformly rotating, spatially periodic chimera patterns as solutions of a reversible ordinary differential equation, and demonstrate a plethora of such states. In the limit of neutral coupling they reduce to analytical solutions in the form of one-and two-point chimera patterns as well as localized chimera solitons. Patterns at weakly attracting coupling are characterized by virtue of a perturbative approach. Stability analysis reveals that only the simplest chimeras with one synchronous region are stable. KW - nonlocal coupled oscillators KW - chimera state KW - coarse-grained order parameter KW - Ott-Antonsen reduction KW - perturbation approach KW - linear stability analysis Y1 - 2017 U6 - https://doi.org/10.1088/1751-8121/aa55f1 SN - 1751-8113 SN - 1751-8121 VL - 50 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bolotov, Maxim I. A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Simple and complex chimera states in a nonlinearly coupled oscillatory medium JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. In terms of a local coarse-grained complex order parameter, the problem of finding stationary rotating nonhomogeneous solutions reduces to a third-order ordinary differential equation. This allows finding chimera-type and other inhomogeneous states as periodic orbits of this equation. Stability calculations reveal that only some of these states are stable. We demonstrate that an oscillatory instability leads to a breathing chimera, for which the synchronous domain splits into subdomains with different mean frequencies. Further development of instability leads to turbulent chimeras. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5011678 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New Journal of Physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 VL - 22 IS - 2 PB - Springer Science CY - New York ER - TY - JOUR A1 - Smirnov, Lev A. A1 - Bolotov, Maxim A1 - Bolotov, Dmitri A1 - Osipov, Grigory V. A1 - Pikovsky, Arkady T1 - Finite-density-induced motility and turbulence of chimera solitons JF - New Journal of Physics N2 - We consider a one-dimensional oscillatory medium with a coupling through a diffusive linear field. In the limit of fast diffusion this setup reduces to the classical Kuramoto–Battogtokh model. We demonstrate that for a finite diffusion stable chimera solitons, namely localized synchronous domain in an infinite asynchronous environment, are possible. The solitons are stable also for finite density of oscillators, but in this case they sway with a nearly constant speed. This finite-density-induced motility disappears in the continuum limit, as the velocity of the solitons is inverse proportional to the density. A long-wave instability of the homogeneous asynchronous state causes soliton turbulence, which appears as a sequence of soliton mergings and creations. As the instability of the asynchronous state becomes stronger, this turbulence develops into a spatio-temporal intermittency. KW - chimera KW - soliton KW - finite-size effects Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac63d9 SN - 1367-2630 VL - 24 PB - IOP CY - London ER - TY - JOUR A1 - Bolotov, Maxim I. A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Breathing chimera in a system of phase oscillators JF - JETP Letters N2 - Chimera states consisting of synchronous and asynchronous domains in a medium of nonlinearly coupled phase oscillators have been considered. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. The direct numerical simulation has shown that these structures under certain conditions are transformed to oscillatory (breathing) chimera regimes because of the development of instability. Y1 - 2017 U6 - https://doi.org/10.1134/S0021364017180059 SN - 0021-3640 SN - 1090-6487 VL - 106 SP - 393 EP - 399 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Caesar, Levke A1 - Rahmstorf, Stefan A1 - Feulner, Georg T1 - On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming JF - Environmental research letters N2 - According to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warming rather than enhancing it. Social Media Abstract: The overturning circulation in the Atlantic Ocean has weakened in response to global warming, as predicted by climate models. Since it plays an important role in transporting heat, nutrients and carbon, a slowdown will affect global climate processes and the global mean temperature. Scientists have questioned whether this slowdown has worked to cool or warm global surface temperatures. This study analyses the overturning strength and global mean temperature evolution of the past decades and shows that a slowdown acts to reduce the global mean temperature. This is because a slower overturning means less water sinks into the deep ocean in the subpolar North Atlantic. As the surface waters are cold there, the sinking normally cools the deep ocean and thereby indirectly warms the surface, thus less sinking implies less surface warming and has a cooling effect. For the foreseeable future, this means that the slowing of the overturning will likely continue to slightly reduce the effect of the general warming due to increasing greenhouse gas concentrations. KW - Atlantic meridional overturning circulation KW - global surface warming KW - ocean heat uptake Y1 - 2020 U6 - https://doi.org/10.1088/1748-9326/ab63e3 SN - 1748-9326 VL - 15 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bekir, Marek A1 - Jelken, Joachim A1 - Jung, Se-Hyeong A1 - Pich, Andrij A1 - Pacholski, Claudia A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Dual responsiveness of microgels induced by single light stimulus JF - Applied physics letters N2 - We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented. Y1 - 2021 U6 - https://doi.org/10.1063/5.0036376 SN - 0003-6951 SN - 1077-3118 VL - 118 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Rosenau, Philip A1 - Pikovskij, Arkadij T1 - Waves in strongly nonlinear Gardner-like equations on a lattice JF - Nonlinearity / the Institute of Physics and the London Mathematical Society N2 - We introduce and study a family of lattice equations which may be viewed either as a strongly nonlinear discrete extension of the Gardner equation, or a non-convex variant of the Lotka-Volterra chain. Their deceptively simple form supports a very rich family of complex solitary patterns. Some of these patterns are also found in the quasi-continuum rendition, but the more intriguing ones, like interlaced pairs of solitary waves, or waves which may reverse their direction either spontaneously or due a collision, are an intrinsic feature of the discrete realm. KW - nonlinear lattice KW - solitary wave KW - Gardner equation KW - compacton Y1 - 2021 U6 - https://doi.org/10.1088/1361-6544/ac0f51 SN - 0951-7715 SN - 1361-6544 VL - 34 IS - 8 SP - 5872 EP - 5896 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Horton, Benjamin P. A1 - Khan, Nicole S. A1 - Cahill, Niamh A1 - Lee, Janice S. H. A1 - Shaw, Timothy A. A1 - Garner, Andra J. A1 - Kemp, Andrew C. A1 - Engelhart, Simon E. A1 - Rahmstorf, Stefan T1 - Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey JF - npj Climate and Atmospheric Science N2 - Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet. KW - projections KW - Greenland KW - consequences KW - climate Y1 - 2020 U6 - https://doi.org/10.1038/s41612-020-0121-5 SN - 2397-3722 VL - 3 IS - 1 SP - 1 EP - 8 PB - Springer Nature CY - London ER - TY - JOUR A1 - Mohammady, M. Hamed A1 - Auffèves, Alexia A1 - Anders, Janet T1 - Energetic footprints of irreversibility in the quantum regime JF - Communications Physics N2 - In classical thermodynamic processes the unavoidable presence of irreversibility, quantified by the entropy production, carries two energetic footprints: the reduction of extractable work from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly dissipated to the environment. Recently it has been shown that in the quantum regime an additional quantum irreversibility occurs that is linked to decoherence into the energy basis. Here we employ quantum trajectories to construct distributions for classical heat and quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs markedly from the classical case. We also quantify how quantum irreversibility reduces the amount of work that can be extracted from a state with coherences. Our results show that decoherence leads to both entropic and energetic footprints which both play an important role in the optimization of controlled quantum operations at low temperature. In classical thermodynamics irreversibility occurs whenever a non-thermal system is brought into contact with a thermal environment. Using quantum trajectories the authors here establish two energetic footprints of quantum irreversible processes, and find that while quantum irreversibility leads to the occurrence of a quantum heat and a reduction of work production, the two are not linked in the same manner as the classical laws of thermodynamics would dictate. KW - entropy production KW - quantum mechanics KW - thermodynamics Y1 - 2020 U6 - https://doi.org/10.1038/s42005-020-0356-9 SN - 2399-3650 VL - 3 IS - 1 SP - 1 EP - 14 PB - Springer Nature CY - London ER - TY - JOUR A1 - Schmidt, Joachim T1 - Die Arbeit bei irreversibler Druck-Volumen-Änderung BT - Varianten der Berechnung N2 - For the calculation of the work in an irreversible pressure-volume change, we propose approxima-tions, which in contrast to the usual representation in the literature reflect the work performed during expansion and compression symmetrically. The calculations are based on the Reversible-Share-Theorem: Is used the force to overcome for calculating the work, so it captures only the configurational reversible work share. KW - physics KW - physical chemistry KW - thermodynamics KW - irreversible volume-change KW - reversible-share-theorem KW - total work KW - reversible work share KW - irreversible work share Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74931 ER - TY - JOUR A1 - Meyer, Philipp A1 - Aghion, Erez A1 - Kantz, Holger T1 - Decomposing the effect of anomalous diffusion enables direct calculation of the Hurst exponent and model classification for single random paths JF - Journal of physics / Institute of Physics. A, Mathematical, nuclear and general N2 - Recently, a large number of research teams from around the world collaborated in the so-called 'anomalous diffusion challenge'. Its aim: to develop and compare new techniques for inferring stochastic models from given unknown time series, and estimate the anomalous diffusion exponent in data. We use various numerical methods to directly obtain this exponent using the path increments, and develop a questionnaire for model selection based on feature analysis of a set of known stochastic processes given as candidates. Here, we present the theoretical background of the automated algorithm which we put for these tasks in the diffusion challenge, as a counter to other pure data-driven approaches. KW - time-series analysis KW - decomposing anomalous diffusion KW - anomalous KW - diffusion exponent KW - process inference Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac72d4 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 27 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bodrova, Anna S. A1 - Chechkin, Aleksei V. A1 - Cherstvy, Andrey G. A1 - Safdari, Hadiseh A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Underdamped scaled Brownian motion BT - (non-)existence of the overdamped limit in anomalous diffusion JF - Scientific reports N2 - It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases. Y1 - 2016 U6 - https://doi.org/10.1038/srep30520 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Safdari, Hadiseh A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Bodrova, Anna A1 - Metzler, Ralf T1 - Aging underdamped scaled Brownian motion BT - Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.012120 SN - 2470-0045 SN - 2470-0053 VL - 95 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Safdari, Hadiseh A1 - Metzler, Ralf T1 - Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity BT - striking differences for massive versus massless particles JF - Journal of physics. D, Applied physics N2 - We investigate a diffusion process with a time-dependent diffusion coefficient, both exponentially increasing and decreasing in time, D(t)=D-0(e +/- 2 alpha t). For this (hypothetical) nonstationary diffusion process we compute-both analytically and from extensive stochastic simulations-the behavior of the ensemble- and time-averaged mean-squared displacements (MSDs) of the particles, both in the over- and underdamped limits. Simple asymptotic relations derived for the short- and long-time behaviors are shown to be in excellent agreement with the results of simulations. The diffusive characteristics in the presence of ageing are also considered, with dramatic differences of the over- versus underdamped regime. Our results for D(t)=D-0(e +/- 2 alpha t) extend and generalize the class of diffusive systems obeying scaled Brownian motion featuring a power-law-like variation of the diffusivity with time, D(t) similar to t(alpha-1). We also examine the logarithmically increasing diffusivity, D(t)=D(0)log[t/tau(0)], as another fundamental functional dependence (in addition to the power-law and exponential) and as an example of diffusivity slowly varying in time. One of the main conclusions is that the behavior of the massive particles is predominantly ergodic, while weak ergodicity breaking is repeatedly found for the time-dependent diffusion of the massless particles at short times. The latter manifests itself in the nonequivalence of the (both nonaged and aged) MSD and the mean time-averaged MSD. The current findings are potentially applicable to a class of physical systems out of thermal equilibrium where a rapid increase or decrease of the particles' diffusivity is inherently realized. One biological system potentially featuring all three types of time-dependent diffusion (power-law-like, exponential, and logarithmic) is water diffusion in the brain tissues, as we thoroughly discuss in the end. KW - anomalous diffusion KW - scaled Brownian motion KW - stochastic processes KW - nonstationary diffusivity KW - water diffusion in the brain KW - nonergodicity Y1 - 2021 U6 - https://doi.org/10.1088/1361-6463/abdff0 SN - 0022-3727 SN - 1361-6463 VL - 54 IS - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Letellier, Christophe A1 - Abraham, Ralph A1 - Shepelyansky, Dima L. A1 - Rossler, Otto E. A1 - Holmes, Philip A1 - Lozi, Rene A1 - Glass, Leon A1 - Pikovsky, Arkady A1 - Olsen, Lars F. A1 - Tsuda, Ichiro A1 - Grebogi, Celso A1 - Parlitz, Ulrich A1 - Gilmore, Robert A1 - Pecora, Louis M. A1 - Carroll, Thomas L. T1 - Some elements for a history of the dynamical systems theory JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Writing a history of a scientific theory is always difficult because it requires to focus on some key contributors and to "reconstruct" some supposed influences. In the 1970s, a new way of performing science under the name "chaos" emerged, combining the mathematics from the nonlinear dynamical systems theory and numerical simulations. To provide a direct testimony of how contributors can be influenced by other scientists or works, we here collected some writings about the early times of a few contributors to chaos theory. The purpose is to exhibit the diversity in the paths and to bring some elements-which were never published-illustrating the atmosphere of this period. Some peculiarities of chaos theory are also discussed. Y1 - 2021 U6 - https://doi.org/10.1063/5.0047851 SN - 1054-1500 SN - 1089-7682 VL - 31 IS - 5 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Resch, Gustav A1 - Schöniger, Franziska A1 - Kleinschmitt, Christoph A1 - Franke, Katja A1 - Thonig, Richard A1 - Lilliestam, Johan T1 - Deep decarbonization of the European power sector calls for dispatchable CSP JF - AIP conference proceedings N2 - Concentrating Solar Power (CSP) offers flexible and decarbonized power generation and is one of the few dispatchable renewable technologies able to generate renewable electricity on demand. Today (2018) CSP contributes only 5TWh to the European power generation, but it has the potential to become one of the key pillars for European decarbonization pathways. In this paper we investigate how factors and pivotal policy decisions leading to different futures and associated CSP deployment in Europe in the years up to 2050. In a second step we characterize the scenarios with their associated system cost and the costs of support policies. We show that the role of CSP in Europe critically depends on political developments and the success or failure of policies outside renewable power. In particular, the uptake of CSP depends on the overall decarbonization ambition, the degree of cross border trade of renewable electricity and is enabled by the presence of strong grid interconnection between Southern and Norther European Member States as well as by future electricity demand growth. The presence of other baseload technologies, prominently nuclear power in France, reduce the role and need for CSP. Assuming favorable technological development, we find a strong role for CSP in Europe in all modeled scenarios: contributing between 100TWh to 300TWh of electricity to a future European power system. This would require increasing the current European CSP fleet by a factor of 20 to 60 in the next 30 years. To achieve this financial support between € 0.4-2 billion per year into CSP would be needed, representing only a small share of overall support needs for power-system transformation. Cooperation of Member States could further help to reduce this cost. Y1 - 2022 U6 - https://doi.org/10.1063/5.0086710 SN - 1551-7616 SN - 0094-243X SP - 050006-1 EP - 050006-9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Hornemann, Andrea A1 - Eichert, Diane Madeleine A1 - Hoehl, Arne A1 - Tiersch, Brigitte A1 - Ulm, Gerhard A1 - Ryadnov, Maxim G. A1 - Beckhoff, Burkhard T1 - Investigating Membrane-Mediated Antimicrobial Peptide Interactions with Synchrotron Radiation Far-Infrared Spectroscopy JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Synchrotron radiation-based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio-molecular phenomena including folding-mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near-THz 400-40 cm(-1) range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature-dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane-induced and folding-mediated activity of AMPs. The far-FTIR study offers a direct and information-rich probe of membrane-related antimicrobial interactions. KW - antimicrobial peptides KW - electrostatic interactions KW - IR spectroscopy KW - phospholipid membranes KW - protein folding Y1 - 2022 U6 - https://doi.org/10.1002/cphc.202100815 SN - 1439-4235 SN - 1439-7641 VL - 23 IS - 4 PB - Wiley-VCH CY - Weinheim ER -