TY - JOUR A1 - Ramachandran, Srikanthan A1 - Rupakheti, Maheswar A1 - Cherian, R. A1 - Lawrence, Mark T1 - Climate Benefits of Cleaner Energy Transitions in East and South Asia Through Black Carbon Reduction JF - Frontiers in environmental science N2 - The state of air pollution has historically been tightly linked to how we produce and use energy. Air pollutant emissions over Asia are now changing rapidly due to cleaner energy transitions; however, magnitudes of benefits for climate and air quality remain poorly quantified. The associated risks involve adverse health impacts, reduced agricultural yields, reduced freshwater availability, contributions to climate change, and economic costs. We focus particularly on climate benefits of energy transitions by making first-time use of two decades of high quality observations of atmospheric loading of light-absorbing black carbon (BC) over Kanpur (South Asia) and Beijing (East Asia) and relating these observations to changing energy, emissions, and economic trends in India and China. Our analysis reveals that absorption aerosol optical depth (AAOD) due to BC has decreased substantially, by 40% over Kanpur and 60% over Beijing between 2001 and 2017, and thus became decoupled from regional economic growth. Furthermore, the resultant decrease in BC emissions and BC AAOD over Asia is regionally coherent and occurs primarily due to transitions into cleaner energies (both renewables and fossil fuels) and not due to the decrease in primary energy supply or decrease in use of fossil use and biofuels and waste. Model simulations show that BC aerosols alone contribute about half of the surface temperature change (warming) of the total forcing due to greenhouse gases, natural and internal variability, and aerosols, thus clearly revealing the climate benefits due to a reduction in BC emissions, which would significantly reduce global warming. However, this modeling study excludes responses from natural variability, circulation, and sea ice responses, which cause relatively strong temperature fluctuations that may mask signals from BC aerosols. Our findings show additional benefits for climate (beyond benefits of CO2 reduction) and for several other issues of sustainability over South and East Asia, provide motivation for ongoing cleaner energy production, and consumption transitions, especially when they are associated with reduced emissions of air pollutants. Such an analysis connecting the trends in energy transitions and aerosol absorption loading, unavailable so far, is crucial for simulating the aerosol climate impacts over Asia which is quite uncertain. KW - cleaner energy transitions KW - Asia KW - air pollution KW - black carbon KW - climate benefits Y1 - 2022 U6 - https://doi.org/10.3389/fenvs.2022.842319 SN - 2296-665X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Sushch, Iurii A1 - Brose, Robert A1 - Pohl, Martin A1 - Plotko, Pavlo A1 - Das, Samata T1 - Leptonic nonthermal emission from supernova remnants evolving in the circumstellar magnetic field JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The very-high-energy (VHE; E > 100 GeV) gamma-ray emission observed from a number of supernova remnants (SNRs) indicates particle acceleration to high energies at the shock of the remnants and a potentially significant contribution to Galactic cosmic rays. It is extremely difficult to determine whether protons (through hadronic interactions and subsequent pion decay) or electrons (through inverse Compton scattering on ambient photon fields) are responsible for this emission. For a successful diagnostic, a good understanding of the spatial and energy distribution of the underlying particle population is crucial. Most SNRs are created in core-collapse explosions and expand into the wind bubble of their progenitor stars. This circumstellar medium features a complex spatial distribution of gas and magnetic field which naturally strongly affects the resulting particle population. In this work, we conduct a detailed study of the spectro-spatial evolution of the electrons accelerated at the forward shock of core-collapse SNRs and their nonthermal radiation, using the RATPaC code that is designed for the time- and spatially dependent treatment of particle acceleration at SNR shocks. We focus on the impact of the spatially inhomogeneous magnetic field through the efficiency of diffusion and synchrotron cooling. It is demonstrated that the structure of the circumstellar magnetic field can leave strong signatures in the spectrum and morphology of the resulting nonthermal emission. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac3cb8 SN - 0004-637X SN - 1538-4357 VL - 926 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Alawashra, Mahmoud A1 - Pohl, Martin T1 - Suppression of the TeV Pair-beam-Plasma Instability by a Tangled Weak Intergalactic Magnetic Field JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We study the effect of a tangled sub-fG level intergalactic magnetic field (IGMF) on the electrostatic instability of a blazar-induced pair beam. Sufficiently strong IGMF may significantly deflect the TeV pair beams, which would reduce the flux of secondary cascade emission below the observational limits. A similar flux reduction may result from the electrostatic beam-plasma instability, which operates the best in the absence of IGMF. Considering IGMF with correlation lengths smaller than a kiloparsec, we find that weak magnetic fields increase the transverse momentum of the pair-beam particles, which dramatically reduces the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. We show that the beam-plasma instability is eliminated as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absence of GeV-scale cascade emission. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac5a4b SN - 0004-637X SN - 1538-4357 VL - 929 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kitzmann, Niklas H. A1 - Romanczuk, Pawel A1 - Wunderling, Nico A1 - Donges, Jonathan T1 - Detecting contagious spreading of urban innovations on the global city network JF - European physical journal special topics N2 - Only a fast and global transformation towards decarbonization and sustainability can keep the Earth in a civilization-friendly state. As hotspots for (green) innovation and experimentation, cities could play an important role in this transition. They are also known to profit from each other's ideas, with policy and technology innovations spreading to other cities. In this way, cities can be conceptualized as nodes in a globe-spanning learning network. The dynamics of this process are important for society's response to climate change and other challenges, but remain poorly understood on a macroscopic level. In this contribution, we develop an approach to identify whether network-based complex contagion effects are a feature of sustainability policy adoption by cities, based on dose-response contagion and surrogate data models. We apply this methodology to an exemplary data set, comprising empirical data on the spreading of a public transport innovation (Bus Rapid Transit Systems) and a global inter-city connection network based on scheduled flight routes. Although our approach is not able to identify detailed mechanisms, our results point towards a contagious spreading process, and cannot be explained by either the network structure or the increase in global adoption rate alone. Further research on the role of a city's abstract "global neighborhood" regarding its policy and innovation decisions is thus both needed and promising, and may connect with research on social tipping processes. The methodology is generic, and can be used to compare the predictive power for innovation spreading of different kinds of inter-city network connections, e.g. via transport links, trade, or co-membership in political networks. Y1 - 2022 U6 - https://doi.org/10.1140/epjs/s11734-022-00470-4 SN - 1951-6355 SN - 1951-6401 VL - 231 IS - 9 SP - 1609 EP - 1624 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Velazquez, Pablo F. A1 - Petruk, Oleh A1 - Chiotellis, Alexandros A1 - Pohl, Martin A1 - Camps-Farina, Artemi A1 - Petrov, Miroslav A1 - Reynoso, Estela M. A1 - Toledo-Roy, Juan C. A1 - Schneiter, E. Matias A1 - Castellanos-Ramirez, Antonio A1 - Esquivel, Alejandro T1 - Rectangular core-collapse supernova remnants BT - application to Puppis A JF - Monthly notices of the Royal Astronomical Society N2 - Core-collapse supernova remnants are the gaseous nebulae of galactic interstellar media (ISM) formed after the explosive death of massive stars. Their morphology and emission properties depend both on the surrounding circumstellar structure shaped by the stellar wind-ISM interaction of the progenitor star and on the local conditions of the ambient medium. In the warm phase of the Galactic plane (n approximate to 1 cm(-3), T approximate to 8000 K), an organized magnetic field of strength 7 mu G has profound consequences on the morphology of the wind bubble of massive stars at rest. In this paper, we show through 2.5D magnetohydrodynamical simulations, in the context of a Wolf-Rayet-evolving 35 M 0 star, that it affects the development of its supernova remnant. When the supernova remnant reaches its middle age (15-20 kyr), it adopts a tubular shape that results from the interaction between the isotropic supernova ejecta and the anisotropic, magnetized, shocked stellar progenitor bubble into which the supernova blast wave expands. Our calculations for non-thermal emission, i.e. radio synchrotron and inverse-Compton radiation, reveal that such supernova remnants can, due to projection effects, appear as rectangular objects in certain cases. This mechanism for shaping a supernova remnant is similar to the bipolar and elliptical planetary nebula production by wind-wind interaction in the low-mass regime of stellar evolution. If such a rectangular core-collapse supernova remnant is created, the progenitor star must not have been a runaway star. We propose that such a mechanism is at work in the shaping of the asymmetric core-collapse supernova remnant Puppis A. KW - stars: evolution KW - stars: massive KW - ISM: supernova remnants KW - methods: MHD Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1832 SN - 0035-8711 SN - 1365-2966 VL - 515 IS - 1 SP - 594 EP - 605 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Dineva, Ekaterina Ivanova A1 - Pearson, Jeniveve A1 - Ilyin, Ilya A1 - Verma, Meetu A1 - Diercke, Andrea A1 - Strassmeier, Klaus A1 - Denker, Carsten T1 - Characterization of chromospheric activity based on Sun-as-a-star spectral and disk-resolved activity indices JF - Astronomische Nachrichten = Astronomical notes N2 - The strong chromospheric absorption lines Ca ii H & K are tightly connected to stellar surface magnetic fields. Only for the Sun, spectral activity indices can be related to evolving magnetic features on the solar disk. The Solar Disk-Integrated (SDI) telescope feeds the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) of the Large Binocular Telescope (LBT) at Mt. Graham International Observatory, Arizona, U.S.A. We present high-resolution, high-fidelity spectra that were recorded on 184 & 82 days in 2018 & 2019 and derive the Ca ii H & K emission ratio, that is, the S-index. In addition, we compile excess brightness and area indices based on full-disk Ca ii K-line-core filtergrams of the Chromospheric Telescope (ChroTel) at Observatorio del Teide, Tenerife, Spain and full-disk ultraviolet (UV) 1600 angstrom images of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Thus, Sun-as-a-star spectral indices are related to their counterparts derived from resolved images of the solar chromosphere. All indices display signatures of rotational modulation, even during the very low magnetic activity in the minimum of Solar Cycle 24. Bringing together different types of activity indices has the potential to join disparate chromospheric datasets yielding a comprehensive description of chromospheric activity across many solar cycles. KW - astronomical databases KW - miscellaneous KW - methods KW - data analysis KW - activity KW - Sun KW - atmosphere KW - chromosphere KW - techniques KW - spectroscopic Y1 - 2022 U6 - https://doi.org/10.1002/asna.20223996 SN - 0004-6337 SN - 1521-3994 VL - 343 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Panchal, Gyanendra A1 - Kojda, Sandrino Danny A1 - Sahoo, Sophia A1 - Bagri, Anita A1 - Kunwar, Hemant Singh A1 - Bocklage, Lars A1 - Panchwanee, Anjali A1 - Sathe, Vasant G. A1 - Fritsch, Katharina A1 - Habicht, Klaus A1 - Choudhary, Ram Janay A1 - Phase, Deodutta M. T1 - Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupled Fe3O4/BaTiO3 (001) heterostructure JF - Physical review : B, Condensed matter and materials physics N2 - We present a study of the control of electric field induced strain on the magnetic and electrical transport properties in a magnetoelastically coupled artificial multiferroic Fe3O4/BaTiO3 heterostructure. In this Fe3O4/BaTiO3 heterostructure, the Fe3O4 thin film is epitaxially grown in the form of bilateral domains, analogous to a-c stripe domains of the underlying BaTiO3(001) substrate. By in situ electric field dependent magnetization measurements, we demonstrate the extrinsic control of the magnetic anisotropy and the characteristic Verwey metal-insulator transition of the epitaxial Fe3O4 thin film in a wide temperature range between 20-300 K, via strain mediated converse magnetoelectric coupling. In addition, we observe strain induced modulations in the magnetic and electrical transport properties of the Fe3O4 thin film across the thermally driven intrinsic ferroelectric and structural phase transitions of the BaTiO3 substrate. In situ electric field dependent Raman measurements reveal that the electric field does not significantly modify the antiphase boundary defects in the Fe3O4 thin film once it is thermodynamically stable after deposition and that the modification of the magnetic properties is mainly caused by strain induced lattice distortions and magnetic anisotropy. These results provide a framework to realize electrical control of the magnetization in a classical highly correlated transition metal oxide. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.105.224419 SN - 2469-9950 SN - 2469-9969 VL - 105 IS - 22 PB - The American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Clark, Oliver J. A1 - Wadgaonkar, Indrajit A1 - Freyse, Friedrich A1 - Springholz, Gunther A1 - Battiato, Marco A1 - Sanchez-Barriga, Jaime T1 - Ultrafast thermalization pathways of excited bulk and surface states in the ferroelectric rashba semiconductor GeTe JF - Advanced materials N2 - A large Rashba effect is essential for future applications in spintronics. Particularly attractive is understanding and controlling nonequilibrium properties of ferroelectric Rashba semiconductors. Here, time- and angle-resolved photoemission is utilized to access the ultrafast dynamics of bulk and surface transient Rashba states after femtosecond optical excitation of GeTe. A complex thermalization pathway is observed, wherein three different timescales can be clearly distinguished: intraband thermalization, interband equilibration, and electronic cooling. These dynamics exhibit an unconventional temperature dependence: while the cooling phase speeds up with increasing sample temperature, the opposite happens for interband thermalization. It is demonstrated how, due to the Rashba effect, an interdependence of these timescales on the relative strength of both electron-electron and electron-phonon interactions is responsible for the counterintuitive temperature dependence, with spin-selection constrained interband electron-electron scatterings found both to dominate dynamics away from the Fermi level, and to weaken with increasing temperature. These findings are supported by theoretical calculations within the Boltzmann approach explicitly showing the opposite behavior of all relevant electron-electron and electron-phonon scattering channels with temperature, thus confirming the microscopic mechanism of the experimental findings. The present results are important for future applications of ferroelectric Rashba semiconductors and their excitations in ultrafast spintronics. KW - ferroelectric semiconductors KW - Rashba effect KW - spin- and angle-resolved photoemission KW - spin-orbit coupling KW - time-resolved photoemission KW - ultrafast dynamics Y1 - 2022 U6 - https://doi.org/10.1002/adma.202200323 SN - 0935-9648 SN - 1521-4095 VL - 34 IS - 24 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Stefancu, Andrei A1 - Nan, Lin A1 - Zhu, Li A1 - Chis, Vasile A1 - Bald, Ilko A1 - Liu, Min A1 - Leopold, Nicolae A1 - Maier, Stefan A. A1 - Cortes, Emiliano T1 - Controlling plasmonic chemistry pathways through specific ion effects JF - Advanced optical materials N2 - Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry. KW - chemical interface damping KW - Hofmeister effect KW - hydration layer KW - plasmonic chemistry KW - specific ion effects KW - surface-enhanced Raman scattering Y1 - 2022 U6 - https://doi.org/10.1002/adom.202200397 SN - 2195-1071 VL - 10 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yan, Xiaoli A1 - Xue, Zhike A1 - Jiang, Chaowei A1 - Priest, E. R. A1 - Kliem, Bernhard A1 - Yang, Liheng A1 - Wang, Jincheng A1 - Kong, Defang A1 - Song, Yongliang A1 - Feng, Xueshang A1 - Liu, Zhong T1 - Fast plasmoid-mediated reconnection in a solar flare JF - Nature Communications N2 - Magnetic reconnection is a multi-faceted process of energy conversion in astrophysical, space and laboratory plasmas that operates at microscopic scales but has macroscopic drivers and consequences. Solar flares present a key laboratory for its study, leaving imprints of the microscopic physics in radiation spectra and allowing the macroscopic evolution to be imaged, yet a full observational characterization remains elusive. Here we combine high resolution imaging and spectral observations of a confined solar flare at multiple wavelengths with data-constrained magnetohydrodynamic modeling to study the dynamics of the flare plasma from the current sheet to the plasmoid scale. The analysis suggests that the flare resulted from the interaction of a twisted magnetic flux rope surrounding a filament with nearby magnetic loops whose feet are anchored in chromospheric fibrils. Bright cusp-shaped structures represent the region around a reconnecting separator or quasi-separator (hyperbolic flux tube). The fast reconnection, which is relevant for other astrophysical environments, revealed plasmoids in the current sheet and separatrices and associated unresolved turbulent motions. Solar flares provide wide range of observational details about fundamental processes involved. Here, the authors show evidence for magnetic reconnection in a strong confined solar flare displaying all four reconnection flows with plasmoids in the current sheet and the separatrices. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-28269-w SN - 2041-1723 VL - 13 IS - 1 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Morris, Paul J. A1 - Bohdan, Artem A1 - Weidl, Martin S. A1 - Pohl, Martin T1 - Preacceleration in the Electron Foreshock. I. Electron Acoustic Waves JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - To undergo diffusive shock acceleration, electrons need to be preaccelerated to increase their energies by several orders of magnitude, else their gyroradii will be smaller than the finite width of the shock. In oblique shocks, where the upstream magnetic field orientation is neither parallel nor perpendicular to the shock normal, electrons can escape to the shock upstream, modifying the shock foot to a region called the electron foreshock. To determine the preacceleration in this region, we undertake particle-in-cell simulations of oblique shocks while varying the obliquity and in-plane angles. We show that while the proportion of reflected electrons is negligible for theta (Bn) = 74.degrees 3, it increases to R similar to 5% for theta (Bn) = 30 degrees, and that, via the electron acoustic instability, these electrons power electrostatic waves upstream with energy density proportional to R (0.6) and a wavelength approximate to 2 lambda (se), where lambda (se) is the electron skin length. While the initial reflection mechanism is typically a combination of shock-surfing acceleration and magnetic mirroring, we show that once the electrostatic waves have been generated upstream, they themselves can increase the momenta of upstream electrons parallel to the magnetic field. In less than or similar to 1% of cases, upstream electrons are prematurely turned away from the shock and never injected downstream. In contrast, a similar fraction is rescattered back toward the shock after reflection, reinteracts with the shock with energies much greater than thermal, and crosses into the downstream. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac69c7 SN - 0004-637X SN - 1538-4357 VL - 931 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Zaragoza-Cardiel, Javier A1 - Gómez-González, Víctor Mauricio Alfonso A1 - Mayya, Yalia Divakara A1 - Ramos-Larios, Gerardo T1 - Nebular abundance gradient in the Cartwheel galaxy using MUSE data JF - Monthly notices of the Royal Astronomical Society N2 - We here present the results from a detailed analysis of nebular abundances of commonly observed ions in the collisional ring galaxy Cartwheel using the Very Large Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) data set. The analysis includes 221 H II regions in the star-forming ring, in addition to 40 relatively fainter H a-emitting regions in the spokes, disc, and the inner ring. The ionic abundances of He, N, O, and Fe are obtained using the direct method (DM) for 9, 20, 20, and 17 ring H II regions, respectively, where the S++ temperature-sensitive line is detected. For the rest of the regions, including all the nebulae between the inner and the outer ring, we obtained O abundances using the strong-line method (SLM). The ring regions have a median 12 + log O/H = 8.19 +/- 0.15, log N/O = -1.57 +/- 0.09 and log Fe/O = -2.24 +/- 0.09 using the DM. Within the range of O abundances seen in the Cartwheel, the N/O and Fe/O values decrease proportionately with increasing O, suggesting local enrichment of O without corresponding enrichment of primary N and Fe. The O abundances of the disc H II regions obtained using the SLM show a well-defined radial gradient. The mean O abundance of the ring H II regions is lower by similar to 0.1 dex as compared to the extrapolation of the radial gradient. The observed trends suggest the preservation of the pre-collisional abundance gradient, displacement of most of the processed elements to the ring, as predicted by the recent simulation by Renaud et al., and post-collisional infall of metal-poor gas in the ring. KW - galaxies: star clusters KW - galaxies: individual KW - galaxies: abundances Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1423 SN - 0035-8711 SN - 1365-2966 VL - 514 IS - 2 SP - 1689 EP - 1705 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Sposini, Vittoria A1 - Chechkin, Aleksei A1 - Sokolov, Igor M. A1 - Roldan-Vargas, Sandalo T1 - Detecting temporal correlations in hopping dynamics in Lennard-Jones liquids JF - Journal of physics : A, Mathematical and theoretical N2 - Lennard-Jones mixtures represent one of the popular systems for the study of glass-forming liquids. Spatio/temporal heterogeneity and rare (activated) events are at the heart of the slow dynamics typical of these systems. Such slow dynamics is characterised by the development of a plateau in the mean-squared displacement (MSD) at intermediate times, accompanied by a non-Gaussianity in the displacement distribution identified by exponential tails. As pointed out by some recent works, the non-Gaussianity persists at times beyond the MSD plateau, leading to a Brownian yet non-Gaussian regime and thus highlighting once again the relevance of rare events in such systems. Single-particle motion of glass-forming liquids is usually interpreted as an alternation of rattling within the local cage and cage-escape motion and therefore can be described as a sequence of waiting times and jumps. In this work, by using a simple yet robust algorithm, we extract jumps and waiting times from single-particle trajectories obtained via molecular dynamics simulations. We investigate the presence of correlations between waiting times and find negative correlations, which becomes more and more pronounced when lowering the temperature. KW - glassy systems KW - hopping dynamics KW - jump detection KW - rare events Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac7e0a SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 32 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Search efficiency in the Adam-Delbruck reduction-of-dimensionality scenario versus direct diffusive search JF - New journal of physics : the open-access journal for physics N2 - The time instant-the first-passage time (FPT)-when a diffusive particle (e.g., a ligand such as oxygen or a signalling protein) for the first time reaches an immobile target located on the surface of a bounded three-dimensional domain (e.g., a hemoglobin molecule or the cellular nucleus) is a decisive characteristic time-scale in diverse biophysical and biochemical processes, as well as in intermediate stages of various inter- and intra-cellular signal transduction pathways. Adam and Delbruck put forth the reduction-of-dimensionality concept, according to which a ligand first binds non-specifically to any point of the surface on which the target is placed and then diffuses along this surface until it locates the target. In this work, we analyse the efficiency of such a scenario and confront it with the efficiency of a direct search process, in which the target is approached directly from the bulk and not aided by surface diffusion. We consider two situations: (i) a single ligand is launched from a fixed or a random position and searches for the target, and (ii) the case of 'amplified' signals when N ligands start either from the same point or from random positions, and the search terminates when the fastest of them arrives to the target. For such settings, we go beyond the conventional analyses, which compare only the mean values of the corresponding FPTs. Instead, we calculate the full probability density function of FPTs for both scenarios and study its integral characteristic-the 'survival' probability of a target up to time t. On this basis, we examine how the efficiencies of both scenarios are controlled by a variety of parameters and single out realistic conditions in which the reduction-of-dimensionality scenario outperforms the direct search. KW - first-passage times KW - Adam-Delbruck scenario KW - dimensional reduction KW - bulk KW - and surface diffusion Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac8824 SN - 1367-2630 VL - 24 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Agarwal, Ankit A1 - Guntu, Ravikumar A1 - Banerjee, Abhirup A1 - Gadhawe, Mayuri Ashokrao A1 - Marwan, Norbert T1 - A complex network approach to study the extreme precipitation patterns in a river basin JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes. Y1 - 2022 U6 - https://doi.org/10.1063/5.0072520 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 1 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Clark, Oliver J. A1 - Freyse, Friedrich A1 - Yashina, L. V. A1 - Rader, Oliver A1 - Sanchez-Barriga, Jaime T1 - Robust behavior and spin-texture stability of the topological surface state in Bi2Se3 upon deposition of gold JF - npj quantum materials N2 - The Dirac point of a topological surface state (TSS) is protected against gapping by time-reversal symmetry. Conventional wisdom stipulates, therefore, that only through magnetisation may a TSS become gapped. However, non-magnetic gaps have now been demonstrated in Bi2Se3 systems doped with Mn or In, explained by hybridisation of the Dirac cone with induced impurity resonances. Recent photoemission experiments suggest that an analogous mechanism applies even when Bi2Se3 is surface dosed with Au. Here, we perform a systematic spin- and angle-resolved photoemission study of Au-dosed Bi2Se3. Although there are experimental conditions wherein the TSS appears gapped due to unfavourable photoemission matrix elements, our photon-energy-dependent spectra unambiguously demonstrate the robustness of the Dirac cone against high Au coverage. We further show how the spin textures of the TSS and its accompanying surface resonances remain qualitatively unchanged following Au deposition, and discuss the mechanism underlying the suppression of the spectral weight. KW - Electronic properties and materials KW - Topological matter Y1 - 2022 U6 - https://doi.org/10.1038/s41535-022-00443-9 SN - 2397-4648 VL - 7 IS - 1 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Padash, Amin A1 - Sandev, Trifce A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Chechkin, Aleksei T1 - Asymmetric Levy flights are more efficient in random search JF - Fractal and fractional N2 - We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity. KW - asymmetric Levy flights KW - first-arrival density KW - search efficiency Y1 - 2022 U6 - https://doi.org/10.3390/fractalfract6050260 SN - 2504-3110 VL - 6 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Kumar, Aanjaneya T1 - First-passage times of multiple diffusing particles with reversible target-binding kinetics JF - Journal of physics : A, Mathematical and theoretical N2 - We investigate a class of diffusion-controlled reactions that are initiated at the time instance when a prescribed number K among N particles independently diffusing in a solvent are simultaneously bound to a target region. In the irreversible target-binding setting, the particles that bind to the target stay there forever, and the reaction time is the Kth fastest first-passage time to the target, whose distribution is well-known. In turn, reversible binding, which is common for most applications, renders theoretical analysis much more challenging and drastically changes the distribution of reaction times. We develop a renewal-based approach to derive an approximate solution for the probability density of the reaction time. This approximation turns out to be remarkably accurate for a broad range of parameters. We also analyze the dependence of the mean reaction time or, equivalently, the inverse reaction rate, on the main parameters such as K, N, and binding/unbinding constants. Some biophysical applications and further perspectives are briefly discussed. KW - first-passage time KW - diffusion-controlled reactions KW - reversible binding KW - extreme statistics Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac7e91 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 32 PB - IOP Publ. CY - Bristol ER - TY - JOUR A1 - Kölsch, Maximilian A1 - Dietrich, Tim A1 - Ujevic, Maximiliano A1 - Brügmann, Bernd T1 - Investigating the mass-ratio dependence of the prompt-collapse threshold with numerical-relativity simulations JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - The next observing runs of advanced gravitational-wave detectors will lead to a variety of binary neutron star detections and numerous possibilities for multimessenger observations of binary neutron star systems. In this context a clear understanding of the merger process and the possibility of prompt black hole formation after merger is important, as the amount of ejected material strongly depends on the merger dynamics. These dynamics are primarily affected by the total mass of the binary, however, the mass ratio also influences the postmerger evolution. To determine the effect of the mass ratio, we investigate the parameter space around the prompt-collapse threshold with a new set of fully relativistic simulations. The simulations cover three equations of state and seven mass ratios in the range of 1.0 <= q <= 1.75, with five to seven simulations of binary systems of different total mass in each case. The threshold mass is determined through an empirical relation based on the collapse time, which allows us to investigate effects of the mass ratio on the threshold mass and also on the properties of the remnant system. Furthermore, we model effects of mass ratio and equation of state on tidal parameters of threshold configurations. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.106.044026 SN - 2470-0010 SN - 2470-0029 VL - 106 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Emma, Mattia A1 - Schianchi, Federico A1 - Pannarale, Francesco A1 - Sagun, Violetta A1 - Dietrich, Tim T1 - Numerical simulations of dark matter admixed neutron star binaries JF - Particles N2 - Multi-messenger observations of compact binary mergers provide a new way to constrain the nature of dark matter that may accumulate in and around neutron stars. In this article, we extend the infrastructure of our numerical-relativity code BAM to enable the simulation of neutron stars that contain an additional mirror dark matter component. We perform single star tests to verify our code and the first binary neutron star simulations of this kind. We find that the presence of dark matter reduces the lifetime of the merger remnant and favors a prompt collapse to a black hole. Furthermore, we find differences in the merger time for systems with the same total mass and mass ratio, but different amounts of dark matter. Finally, we find that electromagnetic signals produced by the merger of binary neutron stars admixed with dark matter are very unlikely to be as bright as their dark matter-free counterparts. Given the increased sensitivity of multi-messenger facilities, our analysis gives a new perspective on how to probe the presence of dark matter. KW - numerical relativity KW - dark matter KW - neutron stars KW - equation of state; KW - gravitational-wave astronomy KW - multi-messenger astrophysics Y1 - 2022 U6 - https://doi.org/10.3390/particles5030024 SN - 2571-712X VL - 5 IS - 3 SP - 273 EP - 286 PB - MDPI CY - Basel ER -