TY - JOUR A1 - Sorgenfrei, Nomi A1 - Giangrisostomi, Erika A1 - Kühn, Danilo A1 - Ovsyannikov, Ruslan A1 - Föhlisch, Alexander T1 - Time and angle-resolved time-of-flight electron spectroscopy for functional materials science JF - Molecules : a journal of synthetic chemistry and natural product chemistry N2 - Electron spectroscopy with the unprecedented transmission of angle-resolved time-of-flight detection, in combination with pulsed X-ray sources, brings new impetus to functional materials science. We showcase recent developments towards chemical sensitivity from electron spectroscopy for chemical analysis and structural information from photoelectron diffraction using the phase transition properties of 1T-TaS2. Our development platform is the SurfaceDynamics instrument located at the Femtoslicing facility at BESSY II, where femtosecond and picosecond X-ray pulses can be generated and extracted. The scientific potential is put into perspective to the current rapidly developing pulsed X-ray source capabilities from Lasers and Free-Electron Lasers. KW - photoelectron spectroscopy KW - surface science KW - time-resolved KW - ultrafast KW - instrumentation KW - dichalcogenides KW - phase transition Y1 - 2022 U6 - https://doi.org/10.3390/molecules27248833 SN - 1420-3049 VL - 27 IS - 24 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tian, Peibo A1 - Liang, Yingjie T1 - Material coordinate driven variable-order fractal derivative model of water anomalous adsorption in swelling soil JF - Chaos, solitons & fractals N2 - The diffusion process of water in swelling (expansive) soil often deviates from normal Fick diffusion and belongs to anomalous diffusion. The process of water adsorption by swelling soil often changes with time, in which the microstructure evolves with time and the absorption rate changes along a fractal dimension gradient function. Thus, based on the material coordinate theory, this paper proposes a variable order derivative fractal model to describe the cumulative adsorption of water in the expansive soil, and the variable order is time dependent linearly. The cumulative adsorption is a power law function of the anomalous sorptivity, and patterns of the variable order. The variable-order fractal derivative model is tested to describe the cumulative adsorption in chernozemic surface soil, Wunnamurra clay and sandy loam. The results show that the fractal derivative model with linearly time dependent variable-order has much better accuracy than the fractal derivative model with a constant derivative order and the integer order model in the application cases. The derivative order can be used to distinguish the evolution of the anomalous adsorption process. The variable-order fractal derivative model can serve as an alternative approach to describe water anomalous adsorption in swelling soil. KW - water adsorption KW - variable order KW - fractal derivative KW - swelling soil KW - material coordinate Y1 - 2022 U6 - https://doi.org/10.1016/j.chaos.2022.112754 SN - 0960-0779 SN - 1873-2887 VL - 164 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schneider, Sebastian A1 - Bytyqi, Kushtrim A1 - Kohaut, Stephan A1 - Bügel, Patrick A1 - Weinschenk, Benjamin A1 - Marz, Michael A1 - Kimouche, Amina A1 - Fink, Karin A1 - Hoffmann-Vogel, Regina T1 - Molecular self-assembly of DBBA on Au(111) at room temperature JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - We have investigated the self-assembly of the graphene nanoribbon molecular precursor 10,10'-dibromo-9,9'-bianthryl (DBBA) on Au(111) with frequency modulation scanning force microscopy (FM-SFM) at room temperature combined with ab initio calculations. For low molecular coverages, the molecules aggregate along the substrate herringbone reconstruction main directions while remaining mobile. At intermediate coverage, two phases coexist, zigzag stripes of monomer chains and decorated herringbones. For high coverage, the molecules assemble in a dimer-striped phase. The adsorption behaviour of DBBA molecules and their interactions are discussed and compared with the results from ab initio calculations. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp02268k SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 46 SP - 28371 EP - 28380 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Rothe, Martin A1 - Zhao, Yuhang A1 - Halim, Henry A1 - Lu, Yan A1 - Benson, Oliver T1 - Spatial mapping of bleaching in a metal-organic plasmon converter JF - Optics continuum N2 - Hybrid nanophotonic elements, fabricated by organic and inorganic materials, are going to be key components of modern devices. Coupled systems of photoemitters with a plasmonic waveguide serve the demand for nanoscopic frequency converters. However, processes like the degradation of the photoemitters via photobleaching occur and need to be monitored and controlled, to realize future successful devices. We introduce a hybrid perylene-diimide / silver nanowire as plasmon frequency converter. A versatile method is presented to monitor and analyze the bleaching process. It is based on a time series of photoluminescence images, during the operation of a single converter. An analytical model is applied on the data and unveils that the photobleaching rate is constant and independent of the operation of the plasmon converter. Y1 - 2022 U6 - https://doi.org/10.1364/OPTCON.454911 SN - 2770-0208 VL - 1 IS - 8 SP - 1730 EP - 1740 PB - Optica Publishing Group CY - Washington ER - TY - JOUR A1 - Voloskov, Boris A1 - Mishurova, Tatiana A1 - Evlashin, Stanislav A1 - Akhatov, Iskander A1 - Bruno, Giovanni A1 - Sergeichev, Ivan T1 - Artificial defects in 316L stainless steel produced by laser powder bed fusion: printability, microstructure, and effects on the very-high-cycle fatigue behavior JF - Advanced engineering materials N2 - The printability of artificial defects inside the additively manufactured laser powder bed fusion (LPBF) 316L stainless steel is investigated. The printing parameters of the LPBF process are optimized to produce artificial defects with reproducible sizes at desired positions while minimizing redundant porosity. The smallest obtained artificial defect is 90 mu m in diameter. The accuracy of the geometry of the printed defect depends on both the height and the diameter in the input model. The effect of artificial defects on the very-high-cycle fatigue (VHCF) behavior of LPBF 316L stainless steel is also studied. The specimens printed with artificial defects in the center are tested under VHCF using an ultrasonic machine. Crack initiation is accompanied by the formation of a fine granular area (FGA), typical of VHCF. Despite the presence of relatively large artificial defects, FGA formation is observed around accidental natural printing defects closer to the surface, which can still be considered as internal. The causes for this occurrence are discussed. KW - artificial defects KW - fine granular areas KW - fracture surfaces KW - laser powder bed fusion KW - very-high-cycle fatigue Y1 - 2022 U6 - https://doi.org/10.1002/adem.202200831 SN - 1438-1656 SN - 1527-2648 VL - 25 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lepro, Valentino A1 - Großmann, Robert A1 - Panah, Setareh Sharifi A1 - Nagel, Oliver A1 - Klumpp, Stefan A1 - Lipowsky, Reinhard A1 - Beta, Carsten T1 - Optimal cargo size for active diffusion of biohybrid microcarriers JF - Physical Review Applied N2 - As society paves its way towards device miniaturization and precision medicine, microscale actuation and transport become increasingly prominent research fields with high impact in both technological and clinical contexts. In order to accomplish movement of micron-sized objects towards specific target sites, active biohybrid transport systems, such as motile living cells that act as smart biochemically powered microcarriers, have been suggested as an alternative to synthetic microrobots. Inspired by the motility of leukocytes, we propose the amoeboid crawling of eukaryotic cells as a promising mechanism for transport of micron-sized cargoes and present an in-depth study of this type of composite active matter. Its transport properties result from the interactions of an active element (cell) and a passive one (cargo) and reveal an optimal cargo size that enhances the locomotion of the load-carrying cells, even exceeding their motility in the absence of cargo. The experimental findings are rationalized in terms of a biohybrid active particle model that describes the emergent cell-cargo dynamics and enables us to derive the long-time diffusive transport of amoeboid microcarriers. As amoeboid locomotion is commonly observed for mammalian cells such as leukocytes, our results lay the foundations for the study of transport performance of other medically relevant cell types and for extending our findings to more advanced transport tasks in complex environments, such as tissues. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevApplied.18.034014 SN - 2331-7019 VL - 18 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Yan, Shengjie A1 - Liang, Yingjie A1 - Xu, Wei T1 - Characterization of chloride ions diffusion in concrete using fractional Brownian motion run with power law clock JF - Fractals : complex geometry, patterns, and scaling in nature and society N2 - In this paper, we propose a revised fractional Brownian motion run with a nonlinear clock (fBm-nlc) model and utilize it to illustrate the microscopic mechanism analysis of the fractal derivative diffusion model with variable coefficient (VC-FDM). The power-law mean squared displacement (MSD) links the fBm-nlc model and the VC-FDM via the two-parameter power law clock and the Hurst exponent is 0.5. The MSD is verified by using the experimental points of the chloride ions diffusion in concrete. When compared to the linear Brownian motion, the results show that the power law MSD of the fBm-nlc is much better in fitting the experimental points of chloride ions in concrete. The fBm-nlc clearly interprets the VC-FDM and provides a microscopic strategy in characterizing different types of non-Fickian diffusion processes with more different nonlinear functions. KW - mean squared displacement KW - anomalous diffusion KW - fractal derivative KW - fractional brownian motion KW - nonlinear clock Y1 - 2022 U6 - https://doi.org/10.1142/S0218348X22501778 SN - 0218-348X SN - 1793-6543 VL - 30 IS - 9 PB - World Scient. Publ. CY - Singapore [u.a.] ER - TY - JOUR A1 - Thapa, Samudrajit A1 - Wyłomańska, Agnieszka A1 - Sikora, Grzegorz A1 - Wagner, Caroline E. A1 - Krapf, Diego A1 - Kantz, Holger A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories JF - New Journal of Physics N2 - Extensive time-series encoding the position of particles such as viruses, vesicles, or individualproteins are routinely garnered insingle-particle tracking experiments or supercomputing studies.They contain vital clues on how viruses spread or drugs may be delivered in biological cells.Similar time-series are being recorded of stock values in financial markets and of climate data.Such time-series are most typically evaluated in terms of time-averaged mean-squareddisplacements (TAMSDs), which remain random variables for finite measurement times. Theirstatistical properties are different for differentphysical stochastic processes, thus allowing us toextract valuable information on the stochastic process itself. To exploit the full potential of thestatistical information encoded in measured time-series we here propose an easy-to-implementand computationally inexpensive new methodology, based on deviations of the TAMSD from itsensemble average counterpart. Specifically, we use the upper bound of these deviations forBrownian motion (BM) to check the applicability of this approach to simulated and real data sets.By comparing the probability of deviations fordifferent data sets, we demonstrate how thetheoretical bound for BM reveals additional information about observed stochastic processes. Weapply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracerbeads measured in mucin hydrogels, and of geographic surface temperature anomalies. Ouranalysis shows how the large-deviation properties can be efficiently used as a simple yet effectiveroutine test to reject the BM hypothesis and unveil relevant information on statistical propertiessuch as ergodicity breaking and short-time correlations. KW - diffusion KW - anomalous diffusion KW - large-deviation statistic KW - time-averaged mean squared displacement KW - Chebyshev inequality Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/abd50e SN - 1367-2630 VL - 23 PB - Dt. Physikalische Ges. ; IOP CY - Bad Honnef ; London ER - TY - JOUR A1 - Teichmann, Erik T1 - Using phase dynamics to study partial synchrony BT - three examples JF - European physical journal special topics N2 - Partial synchronous states appear between full synchrony and asynchrony and exhibit many interesting properties. Most frequently, these states are studied within the framework of phase approximation. The latter is used ubiquitously to analyze coupled oscillatory systems. Typically, the phase dynamics description is obtained in the weak coupling limit, i.e., in the first-order in the coupling strength. The extension beyond the first-order represents an unsolved problem and is an active area of research. In this paper, three partially synchronous states are investigated and presented in order of increasing complexity. First, the usage of the phase response curve for the description of macroscopic oscillators is analyzed. To achieve this, the response of the mean-field oscillations in a model of all-to-all coupled limit-cycle oscillators to pulse stimulation is measured. The next part treats a two-group Kuramoto model, where the interaction of one attractive and one repulsive group results in an interesting solitary state, situated between full synchrony and self-consistent partial synchrony. In the last part, the phase dynamics of a relatively simple system of three Stuart-Landau oscillators are extended beyond the weak coupling limit. The resulting model contains triplet terms in the high-order phase approximation, though the structural connections are only pairwise. Finally, the scaling of the new terms with the coupling is analyzed. Y1 - 2021 U6 - https://doi.org/10.1140/epjs/s11734-021-00156-3 SN - 1951-6355 SN - 1951-6401 VL - 230 IS - 14-15 SP - 2833 EP - 2842 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Rubio, Jesús A1 - Anders, Janet A1 - Correa, Luis A. T1 - Global quantum thermometry JF - Physical review letters / publ. by the American Physical Society N2 - A paradigm shift in quantum thermometry is proposed. To date, thermometry has relied on local estimation, which is useful to reduce statistical fluctuations once the temperature is very well known. In order to estimate temperatures in cases where few measurement data or no substantial prior knowledge are available, we build instead a method for global quantum thermometry. Based on scaling arguments, a mean logarithmic error is shown here to be the correct figure of merit for thermometry. Its full minimization provides an operational and optimal rule to postprocess measurements into a temperature reading, and it establishes a global precision limit. We apply these results to the simulated outcomes of measurements on a spin gas, finding that the local approach can lead to biased temperature estimates in cases where the global estimator converges to the true temperature. The global framework thus enables a reliable approach to data analysis in thermometry experiments. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevLett.127.190402 SN - 0031-9007 SN - 1079-7114 VL - 127 IS - 19 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Keles, Engin T1 - Spectral signature of atmospheric winds in high-resolution transit observations JF - Monthly Notices of the Royal Astronomical Society N2 - The study of exoplanet atmospheres showed large diversity compared to the planets in our Solar system. Especially Jupiter-type exoplanets orbiting their host star in close orbits, the so-called hot and ultra-hot Jupiters, have been studied in detail due to their enhanced atmospheric signature. Due to their tidally locked status, the temperature difference between the day- and nightside triggers atmospheric winds that can lead to various fingerprints in the observations. Spatially resolved absorption lines during transit such as sodium (Na) could be a good tracer for such winds. Different works resolved the Na absorption lines on different exoplanets which show different line widths. Assuming that this could be attributed to such zonal jet streams, this work models the effect of such winds on synthetic absorption lines. For this, transiting Jupiter-type planets with rotational velocities similar to hot and ultra-hot Jupiter are considered. The investigation shows that high wind velocities could reproduce the broadening of Na-line profiles inferred in different high-resolution transit observations. There is a tendency that the broadening values decrease for planets with lower equilibrium temperature. This could be explained by atmospheric drag induced by the ionization of alkali lines that slow down the zonal jet streams, favouring their existence on hot Jupiter rather than ultra-hot Jupiter. Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab099 VL - 502 IS - 1 SP - 1456 EP - 1468 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Klein, Markus A1 - Rosenberger, Elke T1 - The tunneling effect for Schrödinger operators on a vector bundle JF - Analysis and mathematical physics N2 - In the semiclassical limit (h) over bar -> 0, we analyze a class of self-adjoint Schrodinger operators H-(h) over bar = (h) over bar L-2 + (h) over barW + V center dot id(E) acting on sections of a vector bundle E over an oriented Riemannian manifold M where L is a Laplace type operator, W is an endomorphism field and the potential energy V has non-degenerate minima at a finite number of points m(1),... m(r) is an element of M, called potential wells. Using quasimodes of WKB-type near m(j) for eigenfunctions associated with the low lying eigenvalues of H-(h) over bar, we analyze the tunneling effect, i.e. the splitting between low lying eigenvalues, which e.g. arises in certain symmetric configurations. Technically, we treat the coupling between different potential wells by an interaction matrix and we consider the case of a single minimal geodesic (with respect to the associated Agmon metric) connecting two potential wells and the case of a submanifold of minimal geodesics of dimension l + 1. This dimension l determines the polynomial prefactor for exponentially small eigenvalue splitting. KW - Laplace-type operator KW - Vector bundle KW - WKB-expansion KW - Quasimodes KW - Tunneling KW - Spectral gap KW - Complete asymptotics Y1 - 2021 U6 - https://doi.org/10.1007/s13324-021-00485-5 SN - 1664-2368 SN - 1664-235X VL - 11 IS - 2 PB - Springer International Publishing AG CY - Cham (ZG) ER - TY - JOUR A1 - Bär, Christian A1 - Mazzeo, Rafe T1 - Manifolds with many Rarita-Schwinger fields JF - Communications in mathematical physics N2 - The Rarita-Schwinger operator is the twisted Dirac operator restricted to 3/2-spinors. Rarita-Schwinger fields are solutions of this operator which are in addition divergence-free. This is an overdetermined problem and solutions are rare; it is even more unexpected for there to be large dimensional spaces of solutions. In this paper we prove the existence of a sequence of compact manifolds in any given dimension greater than or equal to 4 for which the dimension of the space of Rarita-Schwinger fields tends to infinity. These manifolds are either simply connected Kahler-Einstein spin with negative Einstein constant, or products of such spaces with flat tori. Moreover, we construct Calabi-Yau manifolds of even complex dimension with more linearly independent Rarita-Schwinger fields than flat tori of the same dimension. Y1 - 2021 U6 - https://doi.org/10.1007/s00220-021-04030-0 SN - 0010-3616 SN - 1432-0916 VL - 384 IS - 1 SP - 533 EP - 548 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kluge, Lucas A1 - Schewe, Jacob T1 - Evaluation and extension of the radiation model for internal migration JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Human migration is often studied using gravity models. These models, however, have known limitations, including analytic inconsistencies and a dependence on empirical data to calibrate multiple parameters for the region of interest. Overcoming these limitations, the radiation model has been proposed as an alternative, universal approach to predicting different forms of human mobility, but has not been adopted for studying migration. Here we show, using data on within-country migration from the USA and Mexico, that the radiation model systematically underpredicts long-range moves, while the traditional gravity model performs well for large distances. The universal opportunity model, an extension of the radiation model, shows an improved fit of long-range moves compared to the original radiation model, but at the cost of introducing two additional parameters. We propose a more parsimonious extension of the radiation model that introduces a single parameter. We demonstrate that it fits the data over the full distance spectrum and also-unlike the universal opportunity model-preserves the analytical property of the original radiation model of being equivalent to a gravity model in the limit of a uniform population distribution. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.054311 SN - 2470-0045 SN - 2470-0053 SN - 2470-0061 VL - 104 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gottwald, Georg A. A1 - Reich, Sebastian T1 - Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We present a supervised learning method to learn the propagator map of a dynamical system from partial and noisy observations. In our computationally cheap and easy-to-implement framework, a neural network consisting of random feature maps is trained sequentially by incoming observations within a data assimilation procedure. By employing Takens's embedding theorem, the network is trained on delay coordinates. We show that the combination of random feature maps and data assimilation, called RAFDA, outperforms standard random feature maps for which the dynamics is learned using batch data. Y1 - 2021 U6 - https://doi.org/10.1063/5.0066080 SN - 1054-1500 SN - 1089-7682 VL - 31 IS - 10 PB - AIP CY - Melville ER - TY - JOUR A1 - Gaebel, Tina A1 - Bein, Daniel A1 - Mathauer, Daniel A1 - Utecht, Manuel A1 - Palmer, Richard E. A1 - Klamroth, Tillmann T1 - Nonlocal STM manipulation of chlorobenzene on Si(111)-7 x 7 BT - Potentials, kinetics, and first-principles molecular dynamics calculations for open systems JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We use quantum chemical cluster models together with constrained density STM Ph CI functional theory (DFT) and ab initio molecular dynamics (AIMD) for open system to simulate tip and rationalize nonlocal scanning tunneling microscope (STM) manipulation experiments for Philh ci chlorobenzene (PhCl) on a Si(111)-7 X 7 surface. We consider three different processes, namely, the electron-induced dissociation of the carbon-chlorine bond for physisorbed PhCl molecules at low temperatures and the electron- or hole-induced desorption of chemisorbed PhCl at 300 K. All processes can be induced nonlocally, i.e., up to several nanometers (nm) away from the injection site, in STM experiments. We rationalize and explain the experimental findings regarding the STM-induced dissociation using constrained DFT. The coupling of STM-induced ion resonances to nuclear degrees of freedom is simulated with AIMD using the Gadzuk averaging approach for open systems. From this data, we predict a 4 fs lifetime for the cationic resonance. For the anion model, desorption could not be observed. In addition, the same cluster models are used for transition-state theory calculations, which are compared to and validated against time-lapse STM experiments. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpcc.1c02612 SN - 1932-7447 SN - 1932-7455 VL - 125 IS - 22 SP - 12175 EP - 12184 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wiesner, Karoline A1 - Ladyman, James T1 - Complex systems are always correlated but rarely information processing JF - Journal of physics. Complexity N2 - 'Complex systems are information processors' is a statement that is frequently made. Here we argue for the distinction between information processing-in the sense of encoding and transmitting a symbolic representation-and the formation of correlations (pattern formation/self-organisation). The study of both uses tools from information theory, but the purpose is very different in each case: explaining the mechanisms and understanding the purpose or function in the first case, versus data analysis and correlation extraction in the latter. We give examples of both and discuss some open questions. The distinction helps focus research efforts on the relevant questions in each case. KW - correlations KW - information theory KW - complex systems KW - information KW - processing KW - self-organisation Y1 - 2021 U6 - https://doi.org/10.1088/2632-072X/ac371c SN - 2632-072X VL - 2 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Clavier, Pierre J. T1 - Borel-Écalle resummation of a two-point function JF - Annales Henri Poincaré : a journal of theoretical and mathematical physics / ed. jointly by the Institut Henri Poincaré and by the Swiss Physical Society N2 - We provide an overview of the tools and techniques of resurgence theory used in the Borel-ecalle resummation method, which we then apply to the massless Wess-Zumino model. Starting from already known results on the anomalous dimension of the Wess-Zumino model, we solve its renormalisation group equation for the two-point function in a space of formal series. We show that this solution is 1-Gevrey and that its Borel transform is resurgent. The Schwinger-Dyson equation of the model is then used to prove an asymptotic exponential bound for the Borel transformed two-point function on a star-shaped domain of a suitable ramified complex plane. This proves that the two-point function of the Wess-Zumino model is Borel-ecalle summable. Y1 - 2021 U6 - https://doi.org/10.1007/s00023-021-01057-w SN - 1424-0637 SN - 1424-0661 VL - 22 IS - 6 SP - 2103 EP - 2136 PB - Springer CY - Cham ER - TY - JOUR A1 - Diercke, Andrea A1 - Kuckein, Christoph A1 - Verma, Meetu A1 - Denker, Carsten T1 - Filigree in the surroundings of polar crown and high-latitude filaments JF - Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics N2 - High-resolution observations of polar crown and high-latitude filaments are scarce. We present a unique sample of such filaments observed in high-resolution H alpha narrow-band filtergrams and broad-band images, which were obtained with a new fast camera system at the Vacuum Tower Telescope (VTT), Tenerife, Spain. The Chromospheric Telescope (ChroTel) provided full-disk context observations in H alpha, CaiiK, and Hei 10830 angstrom. The Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) provided line-of-sight magnetograms and ultraviolet (UV) 1700 angstrom filtergrams, respectively. We study filigree in the vicinity of polar crown and high-latitude filaments and relate their locations to magnetic concentrations at the filaments' footpoints. Bright points are a well studied phenomenon in the photosphere at low latitudes, but they were not yet studied in the quiet network close to the poles. We examine size, area, and eccentricity of bright points and find that their morphology is very similar to their counterparts at lower latitudes, but their sizes and areas are larger. Bright points at the footpoints of polar crown filaments are preferentially located at stronger magnetic flux concentrations, which are related to bright regions at the border of supergranules as observed in UV filtergrams. Examining the evolution of bright points on three consecutive days reveals that their amount increases while the filament decays, which indicates they impact the equilibrium of the cool plasma contained in filaments. KW - Chromosphere KW - Quiet KW - Granulation KW - Magnetic fields KW - Photosphere KW - Prominences KW - Quiescent Y1 - 2021 U6 - https://doi.org/10.1007/s11207-021-01776-7 SN - 0038-0938 SN - 1573-093X VL - 296 IS - 2 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Keles, Engin A1 - Mallom, Matthias A1 - von Essen, Carolina A1 - Caroll, Thorsten A. A1 - Alexoudi, Xanthippi A1 - Pino, Lorenzo A1 - Ilyin, Ilya A1 - Poppenhäger, Katja A1 - Kitzmann, Daniel A1 - Nascimbeni, Valerino A1 - Turner, Jake D. A1 - Strassmeier, Klaus G. T1 - The potassium absorption on HD189733b and HD209458b JF - Monthly Notices of the Royal Astronomical Society: Letters N2 - In this work, we investigate the potassium excess absorption around 7699 Å of the exoplanets HD189733b and HD209458b. For this purpose, we used high-spectral resolution transit observations acquired with the 2 × 8.4 m Large Binocular Telescope (LBT) and the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI). For a bandwidth of 0.8 Å, we present a detection >7σ with an absorption level of 0.18 per cent for HD189733b. Applying the same analysis to HD209458b, we can set 3σ upper limit of 0.09 per cent, even though we do not detect a K-excess absorption. The investigation suggests that the K feature is less present in the atmosphere of HD209458b than in the one of HD189733b. This comparison confirms previous claims that the atmospheres of these two planets must have fundamentally different properties. Y1 - 2021 U6 - https://doi.org/10.1093/mnrasl/slz123 VL - 489 IS - 1 SP - L37 EP - L41 PB - Oxford Univ. Press CY - Oxford ER -