TY - JOUR A1 - Vaz da Cruz, Vinícius A1 - Ignatova, Nina A1 - Couto, Rafael A1 - Fedotov, Daniil A1 - Rehn, Dirk R. A1 - Savchenko, Viktoriia A1 - Norman, Patrick A1 - Ågren, Hans A1 - Polyutov, Sergey A1 - Niskanen, Johannes A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Fondell, Mattis A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Föhlisch, Alexander A1 - Odelius, Michael A1 - Kimberg, Victor A1 - Gel’mukhanov, Faris T1 - Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature. (C) 2019 Author(s). Y1 - 2019 U6 - https://doi.org/10.1063/1.5092174 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Vaz da Cruz, Vinicius A1 - Eckert, Sebastian A1 - Iannuzzi, Marcella A1 - Ertan, Emelie A1 - Pietzsch, Annette A1 - Couto, Rafael C. A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Schmitt, Thorsten A1 - Lu, Xingye A1 - McNally, Daniel A1 - Jay, Raphael Martin A1 - Kimberg, Victor A1 - Föhlisch, Alexander A1 - Odelius, Michael T1 - Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering JF - Nature Communications N2 - Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-08979-4 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Vaz da Cruz, Vinicius A1 - Büchner, Robby A1 - Fondell, Mattis A1 - Pietzsch, Annette A1 - Eckert, Sebastian A1 - Föhlisch, Alexander T1 - Targeting individual tautomers in equilibrium by resonant inelastic X-ray scattering JF - The journal of physical chemistry letters N2 - Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the pi and sigma manifolds at the proton-transfer site. KW - Equilibrium KW - Molecular structure KW - Molecules KW - Nitrogen KW - Solvents Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.1c03453 SN - 1948-7185 VL - 13 IS - 10 SP - 2459 EP - 2466 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schick, Daniel A1 - Eckert, Sebastian A1 - Pontius, Niko A1 - Mitzner, Rolf A1 - Föhlisch, Alexander A1 - Holldack, Karsten A1 - Sorgenfrei, Florian T1 - Versatile soft X-ray-optical cross-correlator for ultrafast applications JF - Structural dynamics N2 - We present an X-ray-optical cross-correlator for the soft (> 150 eV) up to the hard X-ray regime based on a molybdenum-silicon superlattice. The cross-correlation is done by probing intensity and position changes of superlattice Bragg peaks caused by photoexcitation of coherent phonons. This approach is applicable for a wide range of X-ray photon energies as well as for a broad range of excitation wavelengths and requires no external fields or changes of temperature. Moreover, the cross-correlator can be employed on a 10 ps or 100 fs time scale featuring up to 50% total X-ray reflectivity and transient signal changes of more than 20%. (C) 2016 Author(s). Y1 - 2016 U6 - https://doi.org/10.1063/1.4964296 SN - 2329-7778 VL - 3 SP - 054304-1 EP - 054304-8 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Pontius, Niko A1 - Beye, Martin A1 - Trabant, Christoph A1 - Mitzner, Rolf A1 - Sorgenfrei, Florian A1 - Kachel, Torsten A1 - Woestmann, Michael A1 - Roling, Sebastian A1 - Zacharias, Helmut A1 - Ivanov, Rosen A1 - Treusch, Rolf A1 - Buchholz, Marcel A1 - Metcalf, Pete A1 - Schuessler-Langeheine, Christian A1 - Föhlisch, Alexander T1 - Probing the non-equilibrium transient state in magnetite by a jitter-free two-color X-ray pump and X-ray probe experiment JF - Structural dynamics N2 - We present a general experimental concept for jitter-free pump and probe experiments at free electron lasers. By generating pump and probe pulse from one and the same X-ray pulse using an optical split-and-delay unit, we obtain a temporal resolution that is limited only by the X-ray pulse lengths. In a two-color X-ray pump and X-ray probe experiment with sub 70 fs temporal resolution, we selectively probe the response of orbital and charge degree of freedom in the prototypical functional oxide magnetite after photoexcitation. We find electronic order to be quenched on a time scale of (30 +/- 30) fs and hence most likely faster than what is to be expected for any lattice dynamics. Our experimental result hints to the formation of a short lived transient state with decoupled electronic and lattice degree of freedom in magnetite. The excitation and relaxation mechanism for X-ray pumping is discussed within a simple model leading to the conclusion that within the first 10 fs the original photoexcitation decays into low-energy electronic excitations comparable to what is achieved by optical pump pulse excitation. Our findings show on which time scales dynamical decoupling of degrees of freedom in functional oxides can be expected and how to probe this selectively with soft X-ray pulses. Results can be expected to provide crucial information for theories for ultrafast behavior of materials and help to develop concepts for novel switching devices. (C) 2018 Author(s). Y1 - 2018 U6 - https://doi.org/10.1063/1.5042847 SN - 2329-7778 VL - 5 IS - 5 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Pietzsch, Annette A1 - Niskanen, Johannes A1 - Vaz da Cruz, Vinicius A1 - Büchner, Robby A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Jay, Raphael Martin A1 - Lu, Xingye A1 - McNally, Daniel A1 - Schmitt, Thorsten A1 - Föhlisch, Alexander T1 - Cuts through the manifold of molecular H2O potential energy surfaces in liquid water at ambient conditions JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 angstrom, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen ls to 4a(1) resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1 s to 2b(2) resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering. KW - water KW - potential ene rgy surface KW - RIXS Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2118101119 SN - 1091-6490 VL - 119 IS - 28 PB - National Acad. of Sciences CY - Washington, DC ER - TY - JOUR A1 - Ochmann, Miguel A1 - Vaz da Cruz, Vinicius A1 - Eckert, Sebastian A1 - Huse, Nils A1 - Föhlisch, Alexander T1 - R-Group stabilization in methylated formamides observed by resonant inelastic X-ray scattering JF - Chemical communications: ChemComm N2 - The inherent stability of methylated formamides is traced to a stabilization of the deep-lying sigma-framework by resonant inelastic X-ray scattering at the nitrogen K-edge. Charge transfer from the amide nitrogen to the methyl groups underlie this stabilization mechanism that leaves the aldehyde group essentially unaltered and explains the stability of secondary and tertiary amides. Y1 - 2022 U6 - https://doi.org/10.1039/d2cc00053a SN - 1359-7345 SN - 1364-548X VL - 58 IS - 63 SP - 8834 EP - 8837 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Norell, Jesper A1 - Jay, Raphael A1 - Hantschmann, Markus A1 - Eckert, Sebastian A1 - Guo, Meiyuan A1 - Gaffney, Kelly A1 - Wernet, Philippe A1 - Lundberg, Marcus A1 - Föhlisch, Alexander A1 - Odelius, Michael T1 - Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft x-ray scattering in transient photo-chemical species T2 - Physical chemistry, chemical physics N2 - We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L3-edge RIXS in the ferricyanide complex Fe(CN)63−, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics. Y1 - 2018 U6 - https://doi.org/10.1039/c7cp08326b SN - 1463-9084 IS - 20 SP - 7243 EP - 7253 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Norell, Jesper A1 - Eckert, Sebastian A1 - Van Kuiken, Benjamin E. A1 - Föhlisch, Alexander A1 - Odelius, Michael T1 - Ab initio simulations of complementary K-edges and solvatization effects for detection of proton transfer in aqueous 2-thiopyridone JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - The nitrogen and sulfur K-edge X-ray absorption spectra of aqueous 2-thiopyridone, a model system for excited-state proton transfer in several recent time-resolved measurements, have been simulated from ab initio molecular dynamics. Spectral signatures of the local intra- and inter-molecular structure are identified and rationalized, which facilitates experimental interpretation and optimization. In particular, comparison of aqueous and gas phase spectrum simulations assesses the previously unquantified solvatization effects, where hydrogen bonding is found to yield solvatochromatic shifts up to nearly 1 eV of the main peak positions. Thereby, while each K-edge can still decisively determine the local protonation of its core-excited site, only their combined, complementary fingerprints allow separating all of the three relevant molecular forms, giving a complete picture of the proton transfer. Y1 - 2019 U6 - https://doi.org/10.1063/1.5109840 SN - 0021-9606 SN - 1089-7690 VL - 151 IS - 11 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Sahle, Christoph J. A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Gilmore, Keith A1 - Pietzsch, Annette A1 - Dantz, Marcus A1 - Lu, Xingye A1 - McNally, Daniel E. A1 - Schmitt, Thorsten A1 - Vaz da Cruz, Vinicius A1 - Kimberg, Victor A1 - Föhlisch, Alexander A1 - Gel’mukhanov, Faris T1 - Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 +/- 2.1% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray-matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open. KW - structure of water KW - X-ray spectroscopy KW - continuous distribution model Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1815701116 SN - 0027-8424 VL - 116 IS - 10 SP - 4058 EP - 4063 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Sahle, Christoph J. A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Gilmore, Keith A1 - Pietzsch, Annette A1 - Dantz, Marcus A1 - Lu, Xingye A1 - McNally, Daniel E. A1 - Schmitt, Thorsten A1 - Vaz da Cruz, Vinicius A1 - Kimberg, Victor A1 - Föhlisch, Alexander T1 - Reply to Pettersson et al.: Why X-ray spectral features are compatible to continuous distribution models in ambient water T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1909551116 SN - 0027-8424 VL - 116 IS - 35 SP - 17158 EP - 17159 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Mascarenhas, Eric Johnn A1 - Fondell, Mattis A1 - Büchner, Robby A1 - Eckert, Sebastian A1 - Vaz da Cruz, Vinícius A1 - Föhlisch, Alexander T1 - Photo-induced ligand substitution of Cr(CO)(6) in 1-pentanol probed by time resolved X-ray absorption spectroscopy JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Cr(CO)(6) was investigated by X-ray absorption spectroscopy. The spectral signature at the metal edge provides information about the back-bonding of the metal in this class of complexes. Among the processes it participates in is ligand substitution in which a carbonyl ligand is ejected through excitation to a metal to ligand charge transfer (MLCT) band. The unsaturated carbonyl Cr(CO)(5) is stabilized by solution media in square pyramidal geometry and further reacts with the solvent. Multi-site-specific probing after photoexcitation was used to investigate the ligand substitution photoreaction process which is a common first step in catalytic processes involving metal carbonyls. The data were analysed with the aid of TD-DFT computations for different models of photoproducts and signatures for ligand rearrangement after substitution were found. The rearrangement was found to occur in about 790 ps in agreement with former studies of the photoreaction. Y1 - 2022 U6 - https://doi.org/10.1039/d1cp05834g SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 30 SP - 17979 EP - 17985 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Liu, Ji-Cai A1 - Vaz da Cruz, Vinicius A1 - Polyutov, Sergey A1 - Föhlisch, Alexander T1 - Recoil-induced dissociation in hard-x-ray photoionization JF - Physical review : A, Atomic, molecular, and optical physics N2 - We predict the recoil-induced molecular dissociation in hard-x-ray photoionization. The recoil effect is caused by electronic and photon momentum exchange with the molecule. We show the strong role of relativistic effects for the studied molecular fragmentation. The recoil-induced fragmentation of the molecule is caused by elongation of the bond due to the vibrational recoil effect and because of the centrifugal force caused by the rotational recoil. The calculations of the x-ray photoelectron spectra of the H-2 and NO molecules show that the predicted effects can be observed in high-energy synchrotrons like SOLEIL, SPring-8, PETRA, and XFEL SACLA. The relativistic effect enhances the recoil momentum transfer and makes it strongly sensitive to the direction of ejection of the fast photoelectron with respect to the photon momentum. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevA.100.053408 SN - 2469-9926 SN - 2469-9934 VL - 100 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Liu, Chun-Yu A1 - Ruotsalainen, Kari A1 - Bauer, Karl A1 - Decker, Régis A1 - Pietzsch, Annette A1 - Föhlisch, Alexander T1 - Excited-state exchange interaction in NiO determined by high-resolution resonant inelastic x-ray scattering at the Ni M2,3 edges JF - Physical review : B, Condensed matter and materials physics N2 - The electronic and magnetic excitations of bulk NiO have been determined using the 3A2g to 3T2g crystal-field transition at the Ni M2,3 edges with resonant inelastic x-ray scattering at 66.3- and 67.9-eV photon energies and 33-meV spectral resolution. Unambiguous assignment of the high-energy side of this state to a spin-flip satellite is achieved. We extract an effective exchange field of 89±4 meV in the 3T2g excited final state from empirical two-peak spin-flip model. The experimental data is found consistent with crystal-field model calculations using exchange fields of 60–100 meV. Full agreement with crystal-field multiplet calculations is achieved for the incident photon energy dependence of line shapes. The lower exchange parameter in the excited state as compared to the ground-state value of 120 meV is discussed in terms of the modification of the orbital occupancy (electronic effects) and of the structural dynamics: (A) With pure electronic effects, the lower exchange energy is attributed to the reduction in effective hopping integral. (B) With no electronic effects, we use the S = 1 Heisenberg model of antiferromagnetism to derive a second-nearest-neighbor exchange constant J2 = 14.8±0.6 meV. Based on the linear correlation between J2 and the lattice parameter from pressure-dependent experiments, an upper limit of 2% local Ni-O bond elongation during the femtosecond scattering duration is derived. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.035104 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 3 PB - American Physical Society CY - Ridge, NY ER - TY - JOUR A1 - Leitner, T. A1 - Josefsson, Ida A1 - Mazza, T. A1 - Miedema, Piter S. A1 - Schröder, H. A1 - Beye, Martin A1 - Kunnus, Kristjan A1 - Schreck, S. A1 - Düsterer, Stefan A1 - Föhlisch, Alexander A1 - Meyer, M. A1 - Odelius, Michael A1 - Wernet, Philippe T1 - Time-resolved electron spectroscopy for chemical analysis of photodissociation BT - Photoelectron spectra of Fe(CO)(5), Fe(CO)(4), and Fe(CO)(3) JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - The prototypical photoinduced dissociation of Fe(CO)(5) in the gas phase is used to test time-resolved x-ray photoelectron spectroscopy for studying photochemical reactions. Upon one-photon excitation at 266 nm, Fe(CO)(5) successively dissociates to Fe(CO)(4) and Fe(CO)(3) along a pathway where both fragments retain the singlet multiplicity of Fe(CO)(5). The x-ray free-electron laser FLASH is used to probe the reaction intermediates Fe(CO)(4) and Fe(CO)(3) with time-resolved valence and core-level photoelectron spectroscopy, and experimental results are interpreted with ab initio quantum chemical calculations. Changes in the valence photoelectron spectra are shown to reflect changes in the valenceorbital interactions upon Fe-CO dissociation, thereby validating fundamental theoretical concepts in Fe-CO bonding. Chemical shifts of CO 3 sigma inner-valence and Fe 3 sigma core-level binding energies are shown to correlate with changes in the coordination number of the Fe center. We interpret this with coordination-dependent charge localization and core-hole screening based on calculated changes in electron densities upon core-hole creation in the final ionic states. This extends the established capabilities of steady-state electron spectroscopy for chemical analysis to time-resolved investigations. It could also serve as a benchmark for howcharge and spin density changes in molecular dissociation and excited-state dynamics are expressed in valence and core-level photoelectron spectroscopy. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5035149 SN - 0021-9606 SN - 1089-7690 VL - 149 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kühn, Danilo A1 - Müller, Moritz A1 - Sorgenfrei, Florian A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Ovsyannikov, Ruslan A1 - Martensson, Nils A1 - Sanchez-Portal, Daniel A1 - Föhlisch, Alexander T1 - Directional sub-femtosecond charge transfer dynamics and the dimensionality of 1T-TaS2 JF - Scientific reports N2 - For the layered transition metal dichalcogenide 1T-TaS2, we establish through a unique experimental approach and density functional theory, how ultrafast charge transfer in 1T-TaS2 takes on isotropic three-dimensional character or anisotropic two-dimensional character, depending on the commensurability of the charge density wave phases of 1T-TaS2. The X-ray spectroscopic core-hole-clock method prepares selectively in-and out-of-plane polarized sulfur 3p orbital occupation with respect to the 1T-TaS2 planes and monitors sub-femtosecond wave packet delocalization. Despite being a prototypical two-dimensional material, isotropic three-dimensional charge transfer is found in the commensurate charge density wave phase (CCDW), indicating strong coupling between layers. In contrast, anisotropic two-dimensional charge transfer occurs for the nearly commensurate phase (NCDW). In direct comparison, theory shows that interlayer interaction in the CCDW phase - not layer stacking variations - causes isotropic three-dimensional charge transfer. This is presumably a general mechanism for phase transitions and tailored properties of dichalcogenides with charge density waves. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-36637-0 SN - 2045-2322 VL - 9 IS - 488 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kühn, Danilo A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Sorgenfrei, Florian A1 - Föhlisch, Alexander T1 - The influence of x-ray pulse length on space-charge effects in optical pump/x-ray probe photoemission JF - New journal of physics : the open-access journal for physics N2 - Pump-probe photoelectron spectroscopy (PES) is a versatile tool to investigate the dynamics of transient states of excited matter. Vacuum space-charge effects can mask these dynamics and complicate the interpretation of electron spectra. Here we report on space-charge effects in Au 4f photoemission from a polycrystalline gold surface, excited with moderately intense 90 ps (FWHM) soft x-ray probe pulses, under the influence of the Coulomb forces exerted by a pump electron cloud, which was produced by intense 40 fs laser pulses. The experimentally observed kinetic energy shift and spectral broadening of the Au 4f lines, measured with highly-efficient time-of-flight spectroscopy, are in good agreement with simulations utilizing a mean-field model of the electrostatic pump electron potential. This confirms that the line broadening is predominantly caused by variations in the take-off time of the probe electrons without appreciable influence of local scattering events. Our findings might be of general interest for pump-probe PES with picosecond-pulse-length sources. KW - space-charge effects KW - mean-field model KW - x-ray photoemission KW - electron spectroscopy KW - pump-probe KW - ARTOF Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab2f5c SN - 1367-2630 VL - 21 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kunnus, Kristjan A1 - Josefsson, I. A1 - Schreck, Simon Frederik A1 - Quevedo, W. A1 - Miedema, P. S. A1 - Techert, S. A1 - de Groot, F. M. F. A1 - Föhlisch, Alexander A1 - Odelius, M. A1 - Wernet, Ph. T1 - Quantifying covalent interactions with resonant inelastic soft X-ray scattering BT - case study of Ni2+ aqua complex JF - Chemical physics letters N2 - We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L-3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. We propose that 2p3d RIXS at the Ni L-3-edge can be utilized to quantify covalency in Ni complexes without the use of external references or simulations. KW - Transition-metal ion KW - Aqueous solution KW - Covalent interaction KW - Resonant inelastic X-ray scattering KW - Ligand-field state KW - Charge-transfer state Y1 - 2016 U6 - https://doi.org/10.1016/j.cplett.2016.12.046 SN - 0009-2614 SN - 1873-4448 VL - 669 SP - 196 EP - 201 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jay, Raphael Martin A1 - Eckert, Sebastian A1 - Vaz da Cruz, Vinicius A1 - Fondell, Mattis A1 - Mitzner, Rolf A1 - Föhlisch, Alexander T1 - Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Charge-density rearrangements after metal-to-ligand charge-transfer excitation in an iron photosensitizer are investigated by R. M Jay, A. Fohlisch et al. in their Communication (DOI: 10.1002/anie.201904761). By using time-resolved X-ray absorption spectroscopy, surprising covalency-effects are revealed that inhibit charge-separation at the intra-molecular level. Furthermore, the underlying mechanism is proposed to be generally in effect for all commonly used photosensitizers in light-harvesting applications, which challenges the common perception of electronic charge-transfer. KW - charge-transfer KW - density functional calculations KW - iron KW - photochemistry KW - X-ray absorption spectroscopy Y1 - 2019 U6 - https://doi.org/10.1002/anie.201904761 SN - 1433-7851 SN - 1521-3773 VL - 58 IS - 31 SP - 10742 EP - 10746 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jay, Raphael Martin A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Miedema, Piter S. A1 - Norell, Jesper A1 - Pietzsch, Annette A1 - Quevedo, Wilson A1 - Niskanen, Johannes A1 - Kunnus, Kristjan A1 - Föhlisch, Alexander T1 - The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(II) complexes JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Understanding and controlling properties of transition metal complexes is a crucial step towards tailoring materials for sustainable energy applications. In a systematic approach, we use resonant inelastic X-ray scattering to study the influence of ligand substitution on the valence electronic structure around an aqueous iron(II) center. Exchanging cyanide with 2-2′-bipyridine ligands reshapes frontier orbitals in a way that reduces metal 3d charge delocalization onto the ligands. This net decrease of metal–ligand covalency results in lower metal-centered excited state energies in agreement with previously reported excited state dynamics. Furthermore, traces of solvent-effects were found indicating a varying interaction strength of the solvent with ligands of different character. Our results demonstrate how ligand exchange can be exploited to shape frontier orbitals of transition metal complexes in solution-phase chemistry; insights upon which future efforts can built when tailoring the functionality of photoactive systems for light-harvesting applications. Y1 - 2018 U6 - https://doi.org/10.1039/c8cp04341h SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 44 SP - 27745 EP - 27751 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Jay, Raphael M. A1 - Vaz da Cruz, Vinicius A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Mitzner, Rolf A1 - Föhlisch, Alexander T1 - Probing solute-solvent interactions of transition metal complexes using L-edge absorption spectroscopy JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - In order to tailor solution-phase chemical reactions involving transition metal complexes, it is critical to understand how their valence electronic charge distributions are affected by the solution environment. Here, solute-solvent interactions of a solvatochromic mixed-ligand iron complex were investigated using X-ray absorption spectroscopy at the transition metal L-2,L-3-edge. Due to the selectivity of the corresponding core excitations to the iron 3d orbitals, the method grants direct access to the valence electronic structure around the iron center and its response to interactions with the solvent environment. A linear increase of the total L-2,L-3-edge absorption cross section as a function of the solvent Lewis acidity is revealed. The effect is caused by relative changes in different metal-ligand-bonding channels, which preserve local charge densities while increasing the density of unoccupied states around the iron center. These conclusions are corroborated by a combination of molecular dynamics and spectrum simulations based on time-dependent density functional theory. The simulations reproduce the spectral trends observed in the X-ray but also optical absorption experiments. Our results underscore the importance of solute-solvent interactions when aiming for an accurate description of the valence electronic structure of solvated transition metal complexes and demonstrate how L-2,L-3-edge absorption spectroscopy can aid in understanding the impact of the solution environment on intramolecular covalency and the electronic charge distribution. KW - basis-sets KW - charge-transfer KW - density KW - dynamics KW - electron localization KW - iron KW - solvation KW - spin-crossover KW - tranfer excited-state KW - x-ray-absorption Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcb.0c00638 SN - 1520-6106 SN - 1520-5207 VL - 124 IS - 27 SP - 5636 EP - 5645 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Jay, Raphael M. A1 - Norell, Jesper A1 - Eckert, Sebastian A1 - Hantschmann, Markus A1 - Beye, Martin A1 - Kennedy, Brian A1 - Quevedo, Wilson A1 - Schlotter, William F. A1 - Dakovski, Georgi L. A1 - Minitti, Michael P. A1 - Hoffmann, Matthias C. A1 - Mitra, Ankush A1 - Moeller, Stefan P. A1 - Nordlund, Dennis A1 - Zhang, Wenkai A1 - Liang, Huiyang W. A1 - Kunnus, Kristian A1 - Kubicek, Katharina A1 - Techert, Simone A. A1 - Lundberg, Marcus A1 - Wernet, Philippe A1 - Gaffney, Kelly A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Disentangling Transient Charge Density and Metal-Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering JF - The journal of physical chemistry letters N2 - Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal-ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. pi-Back-donation is found to be mainly determined by the metal site occupation, whereas the ligand hole instead influences sigma-donation. Our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpclett.8b01429 SN - 1948-7185 VL - 9 IS - 12 SP - 3538 EP - 3543 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Jay, Raphael M. A1 - Eckert, Sebastian A1 - Mitzner, Rolf A1 - Fondell, Mattis A1 - Föhlisch, Alexander T1 - Quantitative evaluation of transient valence orbital occupations in a 3d transition metal complex as seen from the metal and ligand perspective JF - Chemical physics letters N2 - It is demonstrated for the case of photo-excited ferrocyanide how time-resolved soft X-ray absorption spectroscopy in transmission geometry at the ligand K-edge and metal L-3-edge provides quantitatively equivalent valence electronic structure information, where signatures of photo-oxidation are assessed locally at the metal as well as the ligand. This allows for a direct and independent quantification of the number of photo-oxidized molecules at two soft X-ray absorption edges highlighting the sensitivity of X-ray absorption spectroscopy to the valence orbital occupation of 3d transition metal complexes throughout the soft X-ray range. KW - iron cyanides KW - photochemistry KW - soft X-ray absorption Y1 - 2020 U6 - https://doi.org/10.1016/j.cplett.2020.137681 SN - 0009-2614 SN - 1873-4448 VL - 754 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hantschmann, Markus A1 - Föhlisch, Alexander T1 - A rate model approach for FEL pulse induced transmissions changes, saturable absorption, X-ray transparency and stimulated emission JF - Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy N2 - As the use of free electron laser (FEL) sources increases, so do the findings mentioning non-linear phenomena occurring at these experiments, such as saturable absorption, induced transparency and scattering breakdowns. These are well known among the laser community, but are still rarely understood and expected among the X-ray community and to date lack tools and theories to accurately predict the respective experimental parameters and results. We present a simple theoretical framework to access short X-ray pulse induced light- matter interactions which occur at intense short X-ray pulses as available at FEL sources. Our approach allows to investigate effects such as saturable absorption, induced transparency and scattering suppression, stimulated emission, and transmission spectra, while including the density of state influence relevant to soft X-ray spectroscopy in, for example, transition metal complexes or functional materials. This computationally efficient rate model based approach is intuitively adaptable to most solid state sample systems in the soft X-ray spectrum with the potential to be extended for liquid and gas sample systems as well. The feasibility of the model to estimate the named effects and the influence of the density of state is demonstrated using the example of CoPd transition metal systems at the Co edge. We believe this work is an important contribution for the preparation, performance, and understanding of FEL based high intensity and short pulse experiments, especially on functional materials in the soft X-ray spectrum. KW - Free-electron-laser science KW - RIXS at FELs KW - Stimulated scattering KW - Pulse induced transparency KW - Scattering breakdown Y1 - 2022 U6 - https://doi.org/10.1016/j.elspec.2021.147139 SN - 0368-2048 VL - 256 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Giangrisostomi, Erika A1 - Ovsyannikov, Ruslan A1 - Sorgenfrei, Florian A1 - Zhang, Teng A1 - Lindblad, Andreas A1 - Sassa, Yasmine A1 - Cappel, Ute B. A1 - Leitner, Torsten A1 - Mitzner, Rolf A1 - Svensson, Svante A1 - Martensson, Nils A1 - Föhlisch, Alexander T1 - Low Dose Photoelectron Spectroscopy at BESSY II BT - electronic structure of matter in its native state JF - Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy N2 - The implementation of a high-transmission, angular-resolved time-of-Right electron spectrometer with a 1.25 MHz pulse selector at the PM4 soft X-ray dipole beamline of the synchrotron BESSY II creates unique capabilities to inquire electronic structure via photoelectron spectroscopy with a minimum of radiation dose. Solid-state samples can be prepared and characterized with standard UHV techniques and rapidly transferred from various preparation chambers to a 4-axis temperature-controlled measurement stage. A synchronized MHz laser system enables excited-state characterization and dynamical studies starting from the picosecond timescale. This article introduces the principal characteristics of the PM4 beamline and LowDosePES end-station. Recent results from graphene, an organic hole transport material for solar cells and the transition metal dichalcogenide MoS2 are presented to demonstrate the instrument performances. Y1 - 2018 U6 - https://doi.org/10.1016/j.elspec.2017.05.011 SN - 0368-2048 SN - 1873-2526 VL - 224 SP - 68 EP - 78 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Eckert, Sebastian A1 - Vaz da Cruz, Vinícius A1 - Ochmann, Miguel A1 - Ahnen, Inga von A1 - Föhlisch, Alexander A1 - Huse, Nils T1 - Breaking the symmetry of pyrimidine BT - solvent effects and core-excited state dynamics JF - The journal of physical chemistry letters N2 - Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C-2v point group, in an aqueous solution environment, using scattering though its 2a(2) resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b(2) and 11a(1) orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpclett.1c01865 SN - 1948-7185 VL - 12 IS - 35 SP - 8637 EP - 8643 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Eckert, Sebastian A1 - Vaz da Cruz, Vinicius A1 - Ertan, Emelie A1 - Ignatova, Nina A1 - Polyutov, Sergey A1 - Couto, Rafael C. A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Kennedy, Brian A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays JF - Physical review : A, Atomic, molecular, and optical physics N2 - The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevA.97.053410 SN - 2469-9926 SN - 2469-9934 VL - 97 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Eckert, Sebastian A1 - Norell, Jesper A1 - Jay, Raphael Martin A1 - Fondell, Mattis A1 - Mitzner, Rolf A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - T-1 Population as the Driver of Excited-State Proton-Transfer in 2-Thiopyridone JF - Chemistry - a European journal N2 - Excited-state proton transfer (ESPT) is a fundamental process in biomolecular photochemistry, but its underlying mediators often evade direct observation. We identify a distinct pathway for ESPT in aqueous 2-thiopyridone, by employing transient N1s X-ray absorption spectroscopy and multi-configurational spectrum simulations. Photoexcitations to the singlet S-2 and S-4 states both relax promptly through intersystem crossing to the triplet T-1 state. The T-1 state, through its rapid population and near nanosecond lifetime, mediates nitrogen site deprotonation by ESPT in a secondary intersystem crossing to the S-0 potential energy surface. This conclusively establishes a dominant ESPT pathway for the system in aqueous solution, which is also compatible with previous measurements in acetonitrile. Thereby, the hitherto open questions of the pathway for ESPT in the compound, including its possible dependence on excitation wavelength and choice of solvent, are resolved. KW - excited-state proton-transfer KW - intersystem crossing KW - nitrogen KW - photochemistry KW - X-ray absorption Y1 - 2019 U6 - https://doi.org/10.1002/chem.201804166 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 7 SP - 1733 EP - 1739 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Eckert, Sebastian A1 - Mascarenhas, Eric Johnn A1 - Mitzner, Rolf A1 - Jay, Raphael Martin A1 - Pietzsch, Annette A1 - Fondell, Mattis A1 - Vaz da Cruz, Vinicius A1 - Föhlisch, Alexander T1 - From the free ligand to the transition metal complex BT - FeEDTA(-) formation seen at ligand K-Edges JF - Inorganic chemistry N2 - Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal- ligand bond formation are probed through distinct spectroscopic signatures. KW - Energy KW - Ligands KW - Metals KW - Nitrogen KW - Oxygen Y1 - 2022 U6 - https://doi.org/10.1021/acs.inorgchem.2c00789 SN - 0020-1669 SN - 1520-510X VL - 61 IS - 27 SP - 10321 EP - 10328 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Decker, Régis A1 - Born, Artur A1 - Büchner, Robby A1 - Ruotsalainen, Kari A1 - Stråhlman, Christian A1 - Neppl, Stefan A1 - Haverkamp, Robert A1 - Pietzsch, Annette A1 - Föhlisch, Alexander T1 - Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy JF - Scientific reports N2 - While extensive work has been dedicated to the measurement of the demagnetization time following an ultra-short laser pulse, experimental studies of its underlying microscopic mechanisms are still scarce. In transition metal ferromagnets, one of the main mechanism is the spin-flip of conduction electrons driven by electron-phonon scattering. Here, we present an original experimental method to monitor the electron-phonon mediated spin-flip scattering rate in nickel through the stringent atomic symmetry selection rules of x-ray emission spectroscopy. Increasing the phonon population leads to a waning of the 3d -> 2p(3/2) decay peak intensity, which reflects an increase of the angular momentum transfer scattering rate attributed to spin-flip. We find a spin relaxation time scale in the order of 50 fs in the 3d-band of nickel at room temperature, while consistantly, no such peak evolution is observed for the diamagnetic counterexample copper, using the same method. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-45242-8 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Decker, Regis A1 - Born, Artur A1 - Ruotsalainen, Kari A1 - Bauer, Karl A1 - Haverkamp, Robert A1 - Büchner, Robby A1 - Pietzsch, Annette A1 - Föhlisch, Alexander T1 - Spin-lattice angular momentum transfer of localized and valence electrons in the demagnetization transient state of gadolinium JF - Applied physics letters N2 - The electron-phonon scattering is one of the main microscopic mechanisms responsible for the spin-flip in the transient state of ultrafast demagnetization. Here, we present an experimental determination of the temperature-dependent electron-phonon scattering rate in Gd. Using a static x-ray emission spectroscopy method, where the reduction of the decay peak intensities when increasing the temperature is quantified, we measure independently the electron-phonon scattering rate for the 5d and the 4f electrons. We deduce the temperature dependence of scattering for the 5d electrons, while no effect on the phonon population is observed for the 4f electrons. Our results suggest that the ultrafast magnetization dynamics in Gd is triggered by the spin-flip in the 5d electrons. We also evidence the existence of a temperature threshold, above which spin-flip scattering of the 5d electrons takes place. We deduce that during the transient state of ultrafast demagnetization, the exchange energy between 5d electrons has to be overcome before the microscopic electron-phonon scattering process can occur. Y1 - 2021 U6 - https://doi.org/10.1063/5.0063404 SN - 0003-6951 SN - 1077-3118 VL - 119 IS - 15 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Couto, Rafael C. A1 - Cruz, Vinicius V. A1 - Ertan, Emelie A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Kennedy, Brian A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Guimaraes, Freddy F. A1 - Agren, Hans A1 - Odelius, Michael A1 - Kimberg, Victor A1 - Föhlisch, Alexander T1 - Selective gating to vibrational modes through resonant X-ray scattering JF - Nature Communications N2 - The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations. Y1 - 2017 U6 - https://doi.org/10.1038/ncomms14165 SN - 2041-1723 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Büchner, Robby A1 - Fondell, Mattis A1 - Mascarenhas, Eric Johnn A1 - Pietzsch, Annette A1 - Vaz da Cruz, Vinícius A1 - Föhlisch, Alexander T1 - How hydrogen bonding amplifies isomeric differences in pyridones toward strong changes in acidity and tautomerism JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Steric hindrance of hydration and hydrogen bond enhancement by localized charges have been identified as key factors for the massive chemical differences between the hydroxypyridine/pyridone isomers in aqueous solution. While all isomers occur mainly in the hydroxypyridine form in the gas phase, they differ by more than 3 orders of magnitude both in their acidity and tautomeric equilibrium constants upon hydration. By monitoring the electronic and solvation structures as a function of the protonation state and the O- substitution position on the pyridine ring, the amplification of the isomeric differences in aqueous solution has been investigated. Near-edge X-ray absorption fine structure (NEXAFS) measurements at the N K-edge served as the probe of the chemical state. The combination of molecular dynamics simulations, complete active space self-consistent field (CASSCF), and time-dependent density functional theory (TD-DFT) spectral calculations contributes to unraveling the principles of tautomerism and acidity in multiple biochemical systems based on tautomerism. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpcb.0c10873 SN - 1520-6106 SN - 1520-5207 VL - 125 IS - 9 SP - 2372 EP - 2379 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Born, Artur A1 - Decker, Regis A1 - Haverkamp, Robert A1 - Ruotsalainen, Kari A1 - Bauer, Karl A1 - Pietzsch, Annette A1 - Föhlisch, Alexander A1 - Büchner, Robby T1 - Thresholding of the Elliott-Yafet spin-flip scattering in multi-sublattice magnets by the respective exchange energies JF - Scientific reports N2 - How different microscopic mechanisms of ultrafast spin dynamics coexist and interplay is not only relevant for the development of spintronics but also for the thorough description of physical systems out-of-equilibrium. In pure crystalline ferromagnets, one of the main microscopic mechanism of spin relaxation is the electron-phonon (el-ph) driven spin-flip, or Elliott-Yafet, scattering. Unexpectedly, recent experiments with ferro- and ferrimagnetic alloys have shown different dynamics for the different sublattices. These distinct sublattice dynamics are contradictory to the Elliott-Yafet scenario. In order to rationalize this discrepancy, it has been proposed that the intra- and intersublattice exchange interaction energies must be considered in the microscopic demagnetization mechanism, too. Here, using a temperature-dependent x-ray emission spectroscopy (XES) method, we address experimentally the element specific el-ph angular momentum transfer rates, responsible for the spin-flips in the respective (sub)lattices of Fe20Ni80, Fe50Ni50 and pure nickel single crystals. We establish how the deduced rate evolution with the temperature is linked to the exchange coupling constants reported for different alloy stoichiometries and how sublattice exchange energies threshold the related el-ph spin-flip channels. Thus, these results evidence that the Elliott-Yafet spin-flip scattering, thresholded by sublattice exchange energies, is the relevant microscopic process to describe sublattice dynamics in alloys and elemental magnetic systems. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-81177-9 SN - 2045-2322 VL - 11 IS - 1 PB - Springer Nature CY - Berlin ER -