TY - JOUR A1 - Postnov, K. A1 - Oskinova, Lida A1 - Torrejon, J. M. T1 - A propelling neutron star in the enigmatic Be-star gamma Cassiopeia JF - Monthly notices of the Royal Astronomical Society N2 - gamma Cassiopeia (gamma Cas), is known to be a binary system consisting of a Be-type star and a low-mass (M similar to 1M(circle dot)) companion of unknown nature orbiting in the Be-disc plane. Here, we apply the quasi-spherical accretion theory on to a compact magnetized star and show that if the low-mass companion of gamma Cas is a fast spinning neutron star, the key observational signatures of. Cas are remarkably well reproduced. Direct accretion on to this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed which emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from gamma Cas. We suggest that gamma Cas and its analogues constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subsequent evolutionary stage of gamma Cas and its analogues should be the X Per-type binaries comprising low-luminosity slowly rotating X-ray pulsars. The model explains the enigmatic X-ray emission from gamma Cas, and also establishes evolutionary connections between various types of rotating magnetized neutron stars in Be-binaries. KW - stars: emission-line, Be KW - stars: neutron Y1 - 2017 U6 - https://doi.org/10.1093/mnrasl/slw223 SN - 0035-8711 SN - 1365-2966 VL - 465 IS - 1 SP - L119 EP - L123 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hintsche, Marius A1 - Waljor, Veronika A1 - Grossmann, Robert A1 - Kühn, Marco J. A1 - Thormann, Kai M. A1 - Peruani, Fernando A1 - Beta, Carsten T1 - A polar bundle of flagella can drive bacterial swimming by pushing, pulling, or coiling around the cell body JF - Scientific reports N2 - Bacteria swim in sequences of straight runs that are interrupted by turning events. They drive their swimming locomotion with the help of rotating helical flagella. Depending on the number of flagella and their arrangement across the cell body, different run-and-turn patterns can be observed. Here, we present fluorescence microscopy recordings showing that cells of the soil bacterium Pseudomonas putida that are decorated with a polar tuft of helical flagella, can alternate between two distinct swimming patterns. On the one hand, they can undergo a classical push-pull-push cycle that is well known from monopolarly flagellated bacteria but has not been reported for species with a polar bundle of multiple flagella. Alternatively, upon leaving the pulling mode, they can enter a third slow swimming phase, where they propel themselves with their helical bundle wrapped around the cell body. A theoretical estimate based on a random-walk model shows that the spreading of a population of swimmers is strongly enhanced when cycling through a sequence of pushing, pulling, and wrapped flagellar configurations as compared to the simple push-pull-push pattern. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-16428-9 SN - 2045-2322 VL - 7 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Abeysekara, A. U. A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, Wystan A1 - Bird, Ralph A1 - Buchovecky, M. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Byrum, K. A1 - Cerruti, M. A1 - Chen, X. A1 - Ciupik, L. A1 - Cui, W. A1 - Dickinson, H. J. A1 - Eisch, J. D. A1 - Errando, M. A1 - Falcone, A. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortson, L. A1 - Furniss, A. A1 - Gillanders, G. H. A1 - Griffin, S. A1 - Grube, J. A1 - Hutten, M. A1 - Hakansson, N. A1 - Hanna, D. A1 - Holder, J. A1 - Humensky, T. B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Kumar, S. A1 - Lang, M. J. A1 - Maier, G. A1 - McArthur, S. A1 - McCann, A. A1 - Meagher, K. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nguyen, T. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, N. A1 - Pelassa, V. A1 - Pohl, Martin A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rulten, C. A1 - Santander, M. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Tucci, J. V. A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weiner, O. M. A1 - Weinstein, A. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Fegan, S. A1 - Giebels, B. A1 - Horan, D. A1 - Berdyugin, A. A1 - Kuan, J. A1 - Lindfors, E. A1 - Nilsson, K. A1 - Oksanen, A. A1 - Prokoph, H. A1 - Reinthal, R. A1 - Takalo, L. A1 - Zefi, F. T1 - A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2. 1215+30 during routine monitoring observations of the blazar 1ES. 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of <3.6 hr. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. When interpreted in the framework of a onezone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor delta > 10, and an electron population with spectral index p < 2.3. KW - BL Lacertae objects: individual (B2 1215+30, VER J1217+301) KW - galaxies: active KW - galaxies: jets KW - galaxies: nuclei KW - gamma rays: galaxies Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/836/2/205 SN - 0004-637X SN - 1538-4357 VL - 836 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Håkansson, Nils T1 - A Dark Matter line search using 3D-modeling of Cherenkov showers below 10 TeV with VERITAS T1 - Die Suche nach Dunkler Materie mit VERITAS durch Liniensuche und 3D Modellierung von Cherenkov-Schauern unter 10 TeV N2 - Dark matter, DM, has not yet been directly observed, but it has a very solid theoretical basis. There are observations that provide indirect evidence, like galactic rotation curves that show that the galaxies are rotating too fast to keep their constituent parts, and galaxy clusters that bends the light coming from behind-lying galaxies more than expected with respect to the mass that can be calculated from what can be visibly seen. These observations, among many others, can be explained with theories that include DM. The missing piece is to detect something that can exclusively be explained by DM. Direct observation in a particle accelerator is one way and indirect detection using telescopes is another. This thesis is focused on the latter method. The Very Energetic Radiation Imaging Telescope Array System, V ERITAS, is a telescope array that detects Cherenkov radiation. Theory predicts that DM particles annihilate into, e.g., a γγ pair and create a distinctive energy spectrum when detected by such telescopes, e.i., a monoenergetic line at the same energy as the particle mass. This so called ”smoking-gun” signature is sought with a sliding window line search within the sub-range ∼ 0.3 − 10 TeV of the VERITAS energy range, ∼ 0.01 − 30 TeV. Standard analysis within the VERITAS collaboration uses Hillas analysis and look-up tables, acquired by analysing particle simulations, to calculate the energy of the particle causing the Cherenkov shower. In this thesis, an improved analysis method has been used. Modelling each shower as a 3Dgaussian should increase the energy recreation quality. Five dwarf spheroidal galaxies were chosen as targets with a total of ∼ 224 hours of data. The targets were analysed individually and stacked. Particle simulations were based on two simulation packages, CARE and GrISU. Improvements have been made to the energy resolution and bias correction, up to a few percent each, in comparison to standard analysis. Nevertheless, no line with a relevant significance has been detected. The most promising line is at an energy of ∼ 422 GeV with an upper limit cross section of 8.10 · 10^−24 cm^3 s^−1 and a significance of ∼ 2.73 σ, before trials correction and ∼ 1.56 σ after. Upper limit cross sections have also been calculated for the γγ annihilation process and four other outcomes. The limits are in line with current limits using other methods, from ∼ 8.56 · 10^−26 − 6.61 · 10^−23 cm^3s^−1. Future larger telescope arrays, like the upcoming Cherenkov Telescope Array, CTA, will provide better results with the help of this analysis method. N2 - Dunkle Materie, DM, wurde noch nicht direkt beobachtet, aber die Theorie ist sehr solide. Es gibt Beobachtungen, die als indirekte Beweise gelten, z.B. galaktische Rotationskurven, die besagen, dass Galaxien zu schnell rotieren um ohne eine zusätzliche Massenkomponente zusammenhalten zu können, oder elliptische Zwerggalaxien, die massereicher sind als die sichtbare Materie vermuten lässt. Diese Beobachtungen könnten z.B. mit dem Vorhandensein von DM erkärt werden, aber bis jetzt fehlt die Beobachtung eines Phänomens, das ausschließlich durch DM erklärt werden kann. Eine Möglichkeit wäre die Beobachtung einer speziellen Energiesignatur durch Teleskope, welche das Thema der vorliegenden Arbeit ist. Das Very Energetic Radiation Imaging Telescope Array System, VERITAS, ist ein Teleskoparray für Cherenkov-Strahlung. Entsprechend der Theorie sollten Teilchen dunkler Materie annihilieren und z.B. ein γγ Paar bilden. Dieses sollte im Teleskop eine spezielle Energiesignatur hinterlassen, nämlich eine monoenergetische Linie bei einer Energie, die der Teilchenmasse entspricht. Diese ”smoking-gun” Signatur wird mit einer sliding window Liniensuche bei Energien < 10TeV gesucht. In der VERITAS Kollaboration werden standardm¨aßig eine Hillas-Analyse und Nachschlagetabellen aus Teilchensimulationen verwendet, um die Energie des Teilchens zu berechnen, das den Cherenkov-Schauer verursacht hat. Hier wird eine verbesserte Analysemethode verwendet. Dabei wird jeder Schauer als 3D-Gaußkurve modelliert, was die Qualität der Energierekonstruktion erheblich verbessern sollte. Dafur wurden funf elliptische Zwerggalaxien beobachtet und einzeln sowie insgesamt analysiert, insgesamt ~ 224 h Beobachtungszeit. Dabei werden zwei verschiedene Teilchensimulationsprogramme verwendet, CARE und GrISU. In dieser Arbeit wurde die Energieauflösung und die Bias-Korrektur um einige Prozent gegen¨uber der Standardanalyse verbessert. Es wurde jedoch keine signifikante Linie detektiert. Die vielversprechendste Linie befindet sich bei einer Energie von ~ 422GeV und hat einen Querschnitt von 8.10·10^−24 cm^3 s^−1 und ein Signifikanzlevel von ~ 2.73 σ bzw. 1.56σ vor bzw. nach statistischer Korrektur. Außerdem wurden obere Grenzwerte fur verschiedene Annihilierungsprozesse berechnet. Sie stimmen mit anderen aktuellen Grenzwerten überein (~ 8.56 · 10^−26 − 6.61 · 10^−23 cm^3s^−1). Zukünftig werden mehr Beobachtungsdaten und neue Teleskoparrays, wie das Cherenkov Telescope Array, CTA, mit Hilfe dieser Analysemethode bessere Ergebnisse ermöglichen. KW - Dark Matter KW - line search KW - VERITAS KW - 3D-modeling KW - Cherenkov showers KW - Dunkler Materie KW - Line Suche KW - VERITAS KW - 3D Modellierung KW - Cherenkov-Schauern Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397670 ER - TY - THES A1 - Ehrig, Sebastian T1 - 3D curvature and its role on tissue organization N2 - Shape change is a fundamental process occurring in biological tissues during embryonic development and regeneration of tissues and organs. This process is regulated by cells that are constrained within a complex environment of biochemical and physical cues. The spatial constraint due to geometry has a determining role on tissue mechanics and the spatial distribution of force patterns that, in turn, influences the organization of the tissue structure. An understanding of the underlying principles of tissue organization may have wide consequences for the understanding of healing processes and the development of organs and, as such, is of fundamental interest for the tissue engineering community. This thesis aims to further our understanding of how the collective behaviour of cells is influenced by the 3D geometry of the environment. Previous research studying the role of geometry on tissue growth has mainly focused either on flat surfaces or on substrates where at least one of the principal curvatures is zero. In the present work, tissue growth from MC3T3-E1 pre-osteoblasts was investigated on surfaces of controlled mean curvature. One key aspect of this thesis was the development of substrates of controlled mean curvature and their visualization in 3D. It was demonstrated that substrates of controlled mean curvature suitable for cell culture can be fabricated using liquid polymers and surface tension effects. Using these substrates, it was shown that the mean surface curvature has a strong impact on the rate of tissue growth and on the organization of the tissue structure. It was thereby not only demonstrated that the amount of tissue produced (i.e. growth rates) by the cells depends on the mean curvature of the substrate but also that the tissue surface behaves like a viscous fluid with an equilibrium shape governed by the Laplace-Young-law. It was observed that more tissue was formed on highly concave surfaces compared to flat or convex surfaces. Motivated by these observations, an analytical model was developed, where the rate of tissue growth is a function of the mean curvature, which could successfully describe the growth kinetics. This model was also able to reproduce the growth kinetics of previous experiments where tissues have been cultured in straight-sided prismatic pores. A second part of this thesis focuses on the tissue structure, which influences the mechanical properties of the mature bone tissue. Since the extracellular matrix is produced by the cells, the cell orientation has a strong impact on the direction of the tissue fibres. In addition, it was recently shown that some cell types exhibit collective alignment similar to liquid crystals. Based on this observation, a computational model of self-propelled active particles was developed to explore in an abstract manner how the collective behaviour of cells is influenced by 3D curvature. It was demonstrated that the 3D curvature has a strong impact on the self-organization of active particles and gives, therefore, first insights into the principles of self-organization of cells on curved surfaces. N2 - Formänderung ist ein fundamentaler Vorgang während der embryonalen Entwicklung und der Regeneration von Geweben und Organen. Dieser Prozess wird von Zellen reguliert die in einer komplexen Umgebung von biochemischen und physikalischen Signalen eingebettet sind. Die räumliche Begrenzung der Zellen führt dabei zu Unterschieden in der Gewebemechanik und der räumlichen Verteilung von Kräften und hat damit einen Einfluss auf die Organisation der Gewebestruktur. Ein Verständnis der Organisationsprozesse von Geweben hat weitreichende Konsequenzen im Hinblick auf das Verständnis von Heilungsprozessen und der Entwicklung von Organen bis hin zu medizinischen Anwendungen wie der Entwicklung von Implantaten. Die vorliegende Arbeit zielt auf ein besseres Verständnis wie das kollektive Verhalten von Gewebezellen von der dreidimensionalen Krümmung der Umgebung beeinflusst wird. Die bisherige Forschung war bislang limitiert auf flache Oberflächen oder auf Substrate in denen zumindest eine der beiden Hauptkrümmungen Null ist. In dieser Arbeit wurde daher das Gewebewachstum von MC3T3-E1 Pre-Osteoblasten auf Oberflächen mit konstanter mittlerer Krümmung studiert. Ein wichtiger Teil der Arbeit war die Entwicklung von Substraten mit kontrollierter mittlerer Krümmung und deren Visualisierung in 3D. Es wurde gezeigt, dass sich die Oberflächen- spannung von Polymerlösungen nutzen lässt um eben solche Substrate zu erzeugen. Mit Hilfe dieser Substrate wurde gezeigt, dass die mittlere Krümmung der Oberfläche einen entscheidenden Einfluss auf die Wachstumsrate und die Organisation der Gewebestruktur hat. Es konnte nicht nur gezeigt werden dass die Menge an gebildetem Gewebe von der mittleren Krümmung abhängig ist, sondern auch dass die Oberfläche des Gewebes sich dabei wie eine Flüssigkeit verhält und dem Laplace-Young Gesetz folgt. Es wurde beobachtet dass sich mehr Gewebe auf konkaven als auf flachen oder konvexen Oberflächen gebildet hat. Basierend auf diesen Beobachtungen wurde ein analytisches Modell entwickelt, welches die Wachstumsrate als Funktion der mittleren Krümmung beschreibt und mit Hilfe dessen sich das Gewebewachstum erfolgreich beschreiben lässt. Dieses Modell kann auch die Ergebnisse früherer Arbeiten reproduzieren, in denen Gewebe in prismatischen Poren kultiviert wurden. Ein weiterer Teil der Arbeit befasste sich mit der Struktur des Gewebes, welche einen Einfluss auf die späteren mechanischen Eigenschaften des maturierten Knochengewebes hat. Da die extrazelluläre Matrix des Gewebes von den Zellen gebildet wird, hat die Orientierung der Zellen einen entscheidenden Einfluss auf die Ausrichtung der Gewebefasern. Außerdem wurde vor kurzem gezeigt, dass sich manche Zellen wie Flüssigkristalle anordnen können. Basierend auf dieser Beobachtung wurde ein Computermodell aktiver Partikel entwickelt, mit dessen Hilfe sich der Einfluss des kollektiven Verhaltens der Zellen auf dreidimensional gekrümmten Oberflächen abstrahieren lässt. Es konnte dabei gezeigt werden, dass die dreidimensionale Krümmung einen entscheidenden Einfluss auf die Selbstorganisation dieser Partikel hat und gibt damit erste Einblicke in ein mögliches Organisationsverhalten von Zellen auf 3D Oberflächen. KW - biophysics KW - tissue engineering KW - mechanobiology Y1 - 2017 ER -