TY - JOUR A1 - Stojkoski, Viktor A1 - Sandev, Trifce A1 - Basnarkov, Lasko A1 - Kocarev, Ljupco A1 - Metzler, Ralf T1 - Generalised geometric Brownian motion BT - theory and applications to option pricing JF - Entropy N2 - Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness. KW - geometric Brownian motion KW - Fokker– Planck equation KW - Black– Scholes model KW - option pricing Y1 - 2020 U6 - https://doi.org/10.3390/e22121432 SN - 1099-4300 VL - 22 IS - 12 PB - MDPI CY - Basel ER - TY - THES A1 - Krivenkov, Maxim T1 - Spin textures and electron scattering in nanopatterned monolayer graphene N2 - The current thesis is focused on the properties of graphene supported by metallic substrates and specifically on the behaviour of electrons in such systems. Methods of scanning tunneling microscopy, electron diffraction and photoemission spectroscopy were applied to study the structural and electronic properties of graphene. The purpose of the first part of this work is to introduce the most relevant aspects of graphene physics and the methodical background of experimental techniques used in the current thesis. The scientific part of this work starts with the extensive study by means of scanning tunneling microscopy of the nanostructures that appear in Au intercalated graphene on Ni(111). This study was aimed to explore the possible structural explanations of the Rashba-type spin splitting of ~100 meV experimentally observed in this system — much larger than predicted by theory. It was demonstrated that gold can be intercalated under graphene not only as a dense monolayer, but also in the form of well-periodic arrays of nanoclusters, a structure previously not reported. Such nanocluster arrays are able to decouple graphene from the strongly interacting Ni substrate and render it quasi-free-standing, as demonstrated by our DFT study. At the same time calculations confirm strong enhancement of the proximity-induced SOI in graphene supported by such nanoclusters in comparison to monolayer gold. This effect, attributed to the reduced graphene-Au distance in the case of clusters, provides a large Rashba-type spin splitting of ~60 meV. The obtained results not only provide a possible mechanism of SOI enhancement in this particular system, but they can be also generalized for graphene on other strongly interacting substrates intercalated by nanostructures of heavy noble d metals. Even more intriguing is the proximity of graphene to heavy sp-metals that were predicted to induce an intrinsic SOI and realize a spin Hall effect in graphene. Bismuth is the heaviest stable sp-metal and its compounds demonstrate a plethora of exciting physical phenomena. This was the motivation behind the next part of the current thesis, where structural and electronic properties of a previously unreported phase of Bi-intercalated graphene on Ir(111) were studied by means of scanning tunneling microscopy, spin- and angle-resolved photoemission spectroscopy and electron diffraction. Photoemission experiments revealed a remarkable, nearly ideal graphene band structure with strongly suppressed signatures of interaction between graphene and the Ir(111) substrate, moreover, the characteristic moiré pattern observed in graphene on Ir(111) by electron diffraction and scanning tunneling microscopy was strongly suppressed after intercalation. The whole set of experimental data evidences that Bi forms a dense intercalated layer that efficiently decouples graphene from the substrate. The interaction manifests itself only in the n-type charge doping (~0.4 eV) and a relatively small band gap at the Dirac point (~190 meV). The origin of this minor band gap is quite intriguing and in this work it was possible to exclude a wide range of mechanisms that could be responsible for it, such as induced intrinsic spin-orbit interaction, hybridization with the substrate states and corrugation of the graphene lattice. The main origin of the band gap was attributed to the A-B symmetry breaking and this conclusion found support in the careful analysis of the interference effects in photoemission that provided the band gap estimate of ~140 meV. While the previous chapters were focused on adjusting the properties of graphene by proximity to heavy metals, graphene on its own is a great object to study various physical effects at crystal surfaces. The final part of this work is devoted to a study of surface scattering resonances by means of photoemission spectroscopy, where this effect manifests itself as a distinct modulation of photoemission intensity. Though scattering resonances were widely studied in the past by means of electron diffraction, studies about their observation in photoemission experiments started to appear only recently and they are very scarce. For a comprehensive study of scattering resonances graphene was selected as a versatile model system with adjustable properties. After the theoretical and historical introduction to the topic of scattering resonances follows a detailed description of the unusual features observed in the photoemission spectra obtained in this work and finally the equivalence between these features and scattering resonances is proven. The obtained photoemission results are in a good qualitative agreement with the existing theory, as verified by our calculations in the framework of the interference model. This simple model gives a suitable explanation for the general experimental observations. The possibilities of engineering the scattering resonances were also explored. A systematic study of graphene on a wide range of substrates revealed that the energy position of the resonances is in a direct relation to the magnitude of charge transfer between graphene and the substrate. Moreover, it was demonstrated that the scattering resonances in graphene on Ir(111) can be suppressed by nanopatterning either by a superlattice of Ir nanoclusters or by atomic hydrogen. These effects were attributed to strong local variations of tork function and/or destruction of long-range order of thephene lattice. The tunability of scattering resonances can be applied for optoelectronic devices based on graphene. Moreover, the results of this study expand the general understanding of the phenomenon of scattering resonances and are applicable to many other materials besides graphene. N2 - Die vorliegende Arbeit beschäftigt sich mit den Eigenschaften von Graphen auf metallischen Substraten und speziell mit dem Verhalten von Elektronen in solchen Systemen. Der wissenschaftliche Teil dieser Arbeit beginnt mit der umfassenden Untersuchung von Nanostrukturen, die in Au-interkaliertem Graphen auf Ni(111) auftreten, mittels Rastertunnelmikroskopie (RTM). Diese Studie zielte darauf ab, die möglichen strukturellen Erklärungen der experimentell in diesem System beobachteten Rashba- Spin-Aufspaltung von ~100 meV zu untersuchen — die viel größer als theoretisch vorhergesagt ist. Es wurde gezeigt, dass Gold unter Graphen nicht nur als dichte Monolage interkaliert werden kann, sondern auch in Form von exakt periodischen Anordnungen von Nanoclustern, einer Struktur, die bisher nicht beschrieben wurde. Solche Nanocluster-Arrays können Graphen von dem stark wechselwirkenden Ni-Substrat entkoppeln und es quasi freistehend machen, wie unsere Dichtefunktionaltheorie-Studie zeigt. Gleichzeitig bestätigen die Dichtefunktionaltheorie-Rechnungen eine starke Erhöhung der durch Proximity induzierten Spin-Bahn-Wechselwirkung (SBW) in Graphen durch solche Nanocluster im Vergleich zu einer homogenen Gold-Monolage. Dieser Effekt, der im Falle von Clustern auf den verringerten Graphen-Au-Abstand zurückgeführt wird, liefert eine große Spinaufspaltung vom Rashba-Typ von ~60 meV. Die erhaltenen Ergebnisse liefern nicht nur einen möglichen Mechanismus zur Erhöhung der SBW in diesem speziellen System, sondern können auch auf Graphen auf anderen stark wechselwirkenden Substraten verallgemeinert werden, die mit Nanostrukturen von schweren Edelmetallen interkaliert sind. Noch faszinierender ist die Nähe von Graphen zu schweren sp-Metallen, von denen vorhergesagt wurde, dass sie eine intrinsische SBW induzieren und einen Spin-Hall-Effekt in Graphen realisieren. Wismut ist das schwerste stabile sp-Metall und seine Verbindungen zeigen eine Vielzahl aufregender physikalischer Phänomene. Dies war die Motivation für den nächsten Teil der vorliegenden Arbeit, in dem strukturelle und elektronische Eigenschaften einer bisher nicht beschriebenen Phase von Bismuth-interkaliertem Graphen auf Ir(111) untersucht werden. Experimente ergaben eine nahezu ideale Graphenbandstruktur mit stark unterdrückten Wechselwirkungssignaturen zwischen Graphen und dem Ir(111)-Substrat. Die gesamten experimentellen Daten belegen, dass Bi eine dichte interkalierte Schicht bildet, die Graphen effizient vom Substrat entkoppelt. Die Wechselwirkung manifestiert sich nur in der Ladungsdotierung vom n-Typ (~0,4 eV) und einer Bandlücke am Dirac-Punkt (~190 meV). Den Ursprung dieser Bandlücke zu ermitteln ist sehr komplex, und in dieser Arbeit konnte eine Vielzahl von Mechanismen ausgeschlossen werden, die dafür verantwortlich sein könnten, wie etwa induzierte intrinsische SBW, Hybridisierung mit den Substratzuständen und Riffelung des Graphen-Gitters. Der Hauptursprung der Bandlücke wurde einem Bruch der A-B -Symmetrie zugeschrieben, und diese Schlussfolgerung stützte sich auf eine eingehende Analyse der Interferenzeffekte bei der Photoemission, die eine Abschätzung der Bandlücke von ~140 meV lieferte. Während sich die vorherigen Kapitel auf die Anpassung der Eigenschaften von Graphen durch die Nähe zu Schwermetallen konzentrierten, ist Graphen allein ein großartiges Objekt, um verschiedene physikalische Effekte an Kristalloberflächen zu untersuchen. Der letzte Teil dieser Arbeit befasst sich mit der Photoemissionsspektroskopie Untersuchung von Oberflächenstreuresonanzen, deren Effekt sich in einer deutlichen Modulation der Photoemissionsintensität manifestiert. Obwohl Streuresonanzen in der Vergangenheit häufig mittels Elektronenbeugung untersucht wurden, erschienen einige wenige Studien über ihre Beobachtung in Photoemissionsexperimenten erst vor kurzem. Für eine umfassende Untersuchung der Streuresonanzen wurde Graphen als vielseitiges Modellsystem mit einstellbaren Eigenschaften ausgewählt. Das Kapitel beginnt mit einer historischen Einführung in das Thema Streuresonanzen, gefolgt von der Beschreibung der ungewöhnlichen Photoemissionsspektralmerkmale, die in dieser Arbeit erhalten wurden. Schließlich wird die Äquivalenz zwischen diesen Merkmalen und Streuresonanzen bewiesen. Die erhaltenen Photoemissionsergebnisse stimmen qualitativ gut mit der bestehenden Theorie überein, wie unsere Berechnungen im Rahmen des Interferenzmodells belegen. Dieses einfache Modell liefert eine geeignete Erklärung für die Gesamtheit der experimentellen Beobachtungen. Möglichkeiten, die Streuresonanzen zu modifizieren wurden ebenfalls untersucht. Eine systematische Untersuchung von Graphen auf einer Vielzahl von Substraten ergab, dass die Energieposition der Resonanzen in direktem Zusammenhang mit der Größe des Ladungstransfers zwischen Graphen und Substrat steht. Darüber hinaus wurde gezeigt, dass die Streuresonanzen in Graphen auf Ir(111) durch Nanostrukturierung entweder durch ein Übergitter von Ir-Nanoclustern oder durch atomaren Wasserstoff unterdrückt werden können. Diese Effekte wurden auf starke lokale Variationen der Austrittsarbeit und/oder die Zerstörung der langreichweitigen Ordnung des Graphengitters zurückgeführt. Die Abstimmbarkeit von Streuresonanzen kann für optoelektronische Bauelemente auf der Basis von Graphen verwendet werden. Darüber hinaus erweitern die Ergebnisse dieser Studie das allgemeine Verständnis des Phänomens der Streuresonanzen und sind neben Graphen auch auf viele andere Materialien anwendbar. T2 - Spin-Texturen und Elektronenstreuung in nanostrukturiertem Monolage-Graphen KW - graphene KW - spin texture KW - scattering resonances KW - Rashba effect KW - bismuth KW - Rashba-Effekt KW - Wismut KW - Graphen KW - Streuresonanzen KW - Spin Textur Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-487017 ER - TY - JOUR A1 - Kuentzer, Felipe A. A1 - Juracy, Leonardo R. A1 - Moreira, Matheus T. A1 - Amory, Alexandre M. T1 - Testing the blade resilient asynchronous template JF - Analog integrated circuits and signal processing : an international journal N2 - As VLSI design moves into ultra-deep-submicron technologies, timing margins added to the clock period are mandatory, to ensure correct circuit behavior under worst-case conditions. Timing resilient architectures emerged as a promising solution to alleviate these worst-case timing margins. These architectures allow improving system performance and reducing energy consumption. Asynchronous systems, on the other hand, have the potential to improve energy efficiency and performance. Blade is an asynchronous timing resilient template that leverages the advantages of both asynchronous and timing resilient techniques. However, Blade still presents challenges regarding its testability, which hinders its commercial or large-scale application. This paper demonstrates that scan chains can be prohibitive for Blade due to their high silicon costs., which can reach more than 100%. Then, it proposes an alternative test approach that allows concurrent testing, stuck-at, and delay testing. The test approach is based on the reuse the Blade features to provide testability, with silicon area overheads between 4 and 7%. KW - asynchronous design KW - blade KW - delay faults KW - design for Testability KW - stuck-at faults KW - timing resilient design Y1 - 2020 U6 - https://doi.org/10.1007/s10470-020-01651-8 SN - 0925-1030 SN - 1573-1979 VL - 106 IS - 1 SP - 219 EP - 234 PB - Springer CY - Dordrecht ER - TY - THES A1 - Mandal, Partha Sarathi T1 - Controlling the surface band gap in topological states of matter N2 - In the present study, we employ the angle-resolved photoemission spectroscopy (ARPES) technique to study the electronic structure of topological states of matter. In particular, the so-called topological crystalline insulators (TCIs) Pb1-xSnxSe and Pb1-xSnxTe, and the Mn-doped Z2 topological insulators (TIs) Bi2Te3 and Bi2Se3. The Z2 class of strong topological insulators is protected by time-reversal symmetry and is characterized by an odd number of metallic Dirac type surface states in the surface Brillouin zone. The topological crystalline insulators on the other hand are protected by the individual crystal symmetries and exhibit an even number of Dirac cones. The topological properties of the lead tin chalcogenides topological crystalline insulators can be tuned by temperature and composition. Here, we demonstrate that Bi-doping of the Pb1-xSnxSe(111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z2 topological insulator. This occurs because Bi-doping lifts the fourfold valley degeneracy in the bulk. As a consequence a gap appears at ⌈¯, while the three Dirac cones at the M̅ points of the surface Brillouin zone remain intact. We interpret this new phase transition is caused by lattice distortion. Our findings extend the topological phase diagram enormously and make strong topological insulators switchable by distortions or electric field. In contrast, the bulk Bi doping of epitaxial Pb1-xSnxTe(111) films induces a giant Rashba splitting at the surface that can be tuned by the doping level. Tight binding calculations identify their origin as Fermi level pinning by trap states at the surface. Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE) which provide quantized edge states for lossless charge transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point which has not been experimentally observed to date. Our low temperature ARPES studies unambiguously reveal the magnetic gap of Mn-doped Bi2Te3. Our analysis shows a five times larger gap size below the Tc than theoretically predicted. We assign this enhancement to a remarkable structure modification induced by Mn doping. Instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3quintuple layers is formed. This enhances the wave-function overlap and gives rise to a large magnetic gap. Mn-doped Bi2Se3 forms similar heterostructure, but only a nonmagnetic gap is observed in this system. This correlates with the difference in magnetic anisotropy due to the much larger spin-orbit interaction in Bi2Te3 compared to Bi2Se3. These findings provide crucial insights for pushing lossless transport in topological insulators towards room-temperature applications. N2 - In der vorliegenden Studie verwenden wir die Methode der winkelaufgelösten Photoemissionsspektroskopie (ARPES) zur Untersuchung der elektronischen Struktur von topologischen Zuständen der Materie. Insbesondere die sogenannten topologischen kristallinen Isolatoren (TCI) Pb1-xSnxSe und Pb1-xSnxTe sowie die Mn-dotierten Z2 topologischen Isolatoren (TI) Bi2Te3 und Bi2Se3. Die Z2-Klasse der starken topologischen Isolatoren ist durch Zeitumkehrsymmetrie geschützt und durch eine ungerade Anzahl metallischer Dirac-Oberflächenzustände in der Oberflächenbrillouinzone gekennzeichnet. Die topologischen kristallinen Isolatoren hingegen sind durch einzelne Kristallsymmetrien geschützt und weisen eine gerade Anzahl von Dirac-Kegeln auf. Die topologischen Eigenschaften von Blei-Zinn-Chalkogenid-TCI lassen sich durch Temperatur sowie chemische Zusammensetzung einstellen. Hier wird gezeigt, dass Bi-Dotierung von eptiaktischen Pb1-xSnxSe(111)-Schichten einen Quantenphasenübergang von einem topologischen kristallinen Isolator zu einem Z2-topologischen Isolator hervorruft. Dies geschieht, weil die Dotierung mit Bi die vierfache Valley-Entartung im Volumen aufhebt. Als Konsequenz entsteht eine Lücke bei ⌈¯, während die drei Dirac-Kegel an den M̅-Punkten der Oberflächenbrillouinzone intakt bleiben. Wir interpretieren diesen neuen Phasenübergang als durch eine Gitterverzerrung verursacht. Unsere Ergebnisse erweitern das topologische Phasendiagramm enorm und machen starke topologische Isolatoren durch Verzerrungen oder elektrische Felder schaltbar. Im Gegensatz dazu induziert eine Bi-Dotierung im Volumen von epitaktischen Pb1-xSnxTe(111)-Schichten eine riesige Rashba-Aufspaltung an der Oberfläche, die durch das Ausmaß der Dotierung eingestellt werden kann. Tight-Binding-Berechnungen identifizieren ihren Ursprung in einem Fermi-Niveau-Pinning durch Trap-Zustände an der Oberfläche. Magnetisch dotierte topologische Isolatoren ermöglichen den quantisierten anomalen Hall-Effekt (QAHE), der quantisierte Kantenzustände liefert, die für verlustfreien Ladungstransport eingesetzt werden können. Die Kantenzustände treten in einer magnetischen Energielücke am Dirac-Punkt auf, die bisher noch nicht experimentell beobachtet wurde. Unsere Tieftemperatur-ARPES-Untersuchungen weisen die magnetische Energielücke in Mn dotiertem Bi2Te3 eindeutig nach. Unsere Analyse zeigt unterhalb von Tc eine viermal größere Energielücke als theoretisch vorhergesagt. Wir führen diese Erhöhung auf eine bemerkenswerte Strukturmodifikation durch die Mn-Dotierung zurück. Statt eines Systems mit ungeordneten Mn Verunreinigungen entsteht eine selbstorganisierte alternierende Sequenz von MnBi2Te4-Septupel- und Bi2Te3-Quintupel-Schichten. Das erhöht den Überlapp der Wellenfunktionen und führt zu der großen magnetischen Energielücke. Mn-dotiertes Bi2Se3 bildet ähnliche Heterostrukturen aus, jedoch wird in diesem System nur eine nichtmagnetische Energielücke beobachtet. Dies korreliert mit der unterschiedlichen magnetischen Anisotropie aufgrund der viel größeren Spin-Bahn-Wechselwirkung im Bi2Te3 im Vergleich zu Bi2Se3. Diese Resultate liefern entscheidende Erkenntnisse, um verlustfreien Transport in topologischen Isolatoren für Anwendungen bei Raumtemperatur weiterzuentwickeln. KW - ARPES KW - Topological Insulator KW - Topological Crystalline Insulator KW - Rashba effect KW - Rashba-Effekt KW - Topologischer kristalliner Isolator KW - Topologischer Isolator Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-480459 ER - TY - THES A1 - Christ, Simon T1 - Morphological transitions of vesicles exposed to nonuniform spatio-temporal conditions N2 - Giant unilamellar vesicles are an important tool in todays experimental efforts to understand the structure and behaviour of biological cells. Their simple structure allows the isolation of the physical elastic properties of the lipid membrane. A central physical property is the bending energy of the membrane, since the many different shapes of giant vesicles can be obtained by finding the minimum of the bending energy. In the spontaneous curvature model the bending energy is a function of the bending rigidity as well as the mean curvature and an additional parameter called the spontaneous curvature, which describes an internal preference of the lipid-bilayer to bend towards one side or the other. The spontaneous and mean curvature are local properties of the membrane. Additional constraints arise from the conservation of the membrane surface area and the enclosed volume, which are global properties. In this thesis the spontaneous curvature model is used to explain the experimental observation of a periodic shape oscillation of a giant unilamellar vesicle that was filled with a protein complex that periodically binds to and unbinds from the membrane. By assuming that the binding of the proteins to the membrane induces a change in the spontaneous curvature the experimentally observed shapes could successfully be explained. This involves the numerical solution of the differential equations as obtained from the minimization of the bending energy respecting the area and volume constraints, the so called shape equations. Vice versa this approach can be used to estimate the spontaneous curvature from experimentally measurable quantities. The second topic of this thesis is the analysis of concentration gradients in rigid conic membrane compartments. Gradients of an ideal gas due to gravity and gradients generated by the directed stochastic movement of molecular motors along a microtubulus were considered. It was possible to calculate the free energy and the bending energy analytically for the ideal gas. In the case of the non-equilibrium system with molecular motors, the characteristic length of the density profile, the jam-length, and its dependency on the opening angle of the conic compartment have been calculated in the mean-field limit. The mean field results agree qualitatively with stochastic particle simulations. N2 - Die Morphologie beschreibt die Struktur und Form von Organismen. Im Rahmen dieser Arbeit werden insbesondere die verschiedenen Formen von einfachen Lipidmembranen untersucht, die geschlossene Formen in Lösung bilden, die Vesikel. Der Fokus liegt dabei auf Begebenheiten, in denen die es inhomogene Zustände innerhalb oder außerhalb des Vesikels gibt. Das betrifft zum einen die Erklärung der beobachteten Formen in einem Experiment, bei dem im Inneren des Vesikels Proteine plaziert wurden, die sich wiederkehrend an die innere Vesikelmembran heften und wieder ablösen. Dabei Verändert sich die Form des Vesikels von einer symmetrischen erdnussähnlichen Form zu einer asymmetrischen Form mit einem sehr dünnen Hals. Mittels eines theoretischem Modells, dass dem Anheften der Proteine eine Änderung in ihrer bevorzugten Krümmung zuweist, werden Formen berechnet, die den beobachteten Formen gleichen und nur durch das Variieren der bevorzugten Krümmung kann derselbe Formübergang erzielt werden. Außerdem wird die Biegeenergie von Vesikeln, die durch die äußere Umgebung in eine kegelförmige Form gezwungen werden, in Abhängigkeit des Öffnungswinkels des Kegels analytisch berechnet. Es wird weiterhin die freie Energie eines idealen Gases, das durch die Kräfte der Gravitation inhomogen verteilt ist, innerhalb solcher starren kegelförmigen Vesikeln analytisch berechnet. Ein weiteres System, das betrachtet wird, sind molekulare Motoren, die die Fähigkeit besitzen, sich entlang bestimmter Stränge, der Mikrotubuli, gerichtet fortzubewegen und wenn sie sich nicht an einem Mikrotubulus befinden, bewegen sie sich aufgrund der üblichen ungerichteten Kräfte, der Diffusion. Wenn nur ein Mikrotubulus und nur eine Art von Motoren vorhanden ist, entsteht dadurch eine Anhäufung von Teilchen auf der Seite in die die Motoren sich bewegen, ein Konzentrationsgradient. Es wird analytisch berechnet, wie sich dieser Konzentrationsgradient verschiebt, wenn sich der Öffnungswinkel des Kegels ändert und mit Ergebnissen aus Computersimulationen verglichen. T2 - Morphologische Übergänge von Vesikeln unter räumlich oder zeitlich inhomogenen Bedingunge KW - Formgleichungen von Vesikeln KW - Shape equations of vesicles KW - Molekulare Motoren KW - Molecular motors KW - Conic compartments KW - Kegelförmige Geometrien KW - Bending energy KW - Biegeenergie KW - Min-Proteine KW - Min-proteins Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-480788 ER - TY - GEN A1 - Abdalla, Hassan E. A1 - Adam, Remi A1 - Aharonian, Felix A. A1 - Benkhali, Faical Ait A1 - Angüner, Ekrem Oǧuzhan A1 - Arakawa, Masanori A1 - Arcaro, C A1 - Armand, Catherine A1 - Armstrong, T. A1 - Egberts, Kathrin T1 - Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1202 KW - BL Lacertae objects: individual KW - galaxies: high-redshift KW - gamma-rays: general KW - Resolved and unresolved sources as a function of wavelength Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526000 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Vollbrecht, Joachim A1 - Brus, Viktor V. T1 - On charge carrier density in organic solar cells obtained via capacitance spectroscopy JF - Advanced electronic materials N2 - The determination of the voltage-dependent density of free charge carriers via capacitance spectroscopy is considered an important step in the analysis of emerging photovoltaic technologies, such as organic and perovskite solar cells. In particular, an intimate knowledge of the density of free charge carriers is required for the determination of crucial parameters such as the effective mobility, charge carrier lifetime, nongeminate recombination coefficients, average extraction times, and competition factors. Hence, it is paramount to verify the validity of the commonly employed approaches to obtain the density of free charge carriers. The advantages, drawbacks, and limitations of the most common approaches are investigated in detail and strategies to mitigate misleading values are explored. To this end, two types of nonfullerene organic solar cells based on a PTB7-Th:ITIC-2F blend and a PM6:Y6 blend, respectively, are used as a case study to assess how subsequent analyses of the nongeminate recombination dynamics depend on the chosen approach to calculate the density of free charge carriers via capacitance spectroscopy. KW - bulk-heterojunction solar cells KW - capacitance spectroscopy KW - charge KW - carrier density KW - impedance spectroscopy KW - organic photovoltaics Y1 - 2020 U6 - https://doi.org/10.1002/aelm.202000517 SN - 2199-160X VL - 6 IS - 10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Vollbrecht, Joachim A1 - Brus, Viktor V. T1 - On the recombination order of surface recombination under open circuit conditions JF - Organic electronics : physics, materials and applications N2 - Understanding the recombination dynamics of organic and perovskite solar cells has been a crucial prerequisite in the steadily increasing performance of these promising new types of photovoltaics. Surface recombination in particular has turned out to be one of the last remaining roadblocks, which specifically reduces the open circuit voltage. In this study, the relationship between the rate of surface recombination and the density of charge carriers is analyzed, revealing a cubic dependence between these two parameters. This hypothesis is then tested and verified with the recombination dynamics of an organic solar cell known to exhibit significant surface recombination and a high energy proton irradiated CH3NH3PbI3 pemvskite solar cell during white light illumination. Incidentally, these results can also explain recombination orders exceeding the commonly known threshold for bimolecular recombination that have been observed in some studies without the need for a charge carrier dependent bimolecular recombination coefficient. KW - surface recombination KW - recombination order KW - organic photovoltaics KW - Perovskite solar cells KW - charge carrier density KW - Shockley-Read-Hall KW - statistics Y1 - 2020 U6 - https://doi.org/10.1016/j.orgel.2020.105905 SN - 1566-1199 SN - 1878-5530 VL - 86 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Chigarev, Vladimir A1 - Kazakov, Alexey A1 - Pikovsky, Arkady T1 - Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We consider several examples of dynamical systems demonstrating overlapping attractor and repeller. These systems are constructed via introducing controllable dissipation to prototypic models with chaotic dynamics (Anosov cat map, Chirikov standard map, and incompressible three-dimensional flow of the ABC-type on a three-torus) and ergodic non-chaotic behavior (skew-shift map). We employ the Kantorovich-Rubinstein-Wasserstein distance to characterize the difference between the attractor and the repeller, in dependence on the dissipation level. Y1 - 2020 U6 - https://doi.org/10.1063/5.0007230 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Holmes, Zoe A1 - Anders, Janet A1 - Mintert, Florian T1 - Enhanced energy transfer to an optomechanical piston from indistinguishable photons JF - Physical review letters N2 - Thought experiments involving gases and pistons, such as Maxwell's demon and Gibbs' mixing, are central to our understanding of thermodynamics. Here, we present a quantum thermodynamic thought experiment in which the energy transfer from two photonic gases to a piston membrane grows quadratically with the number of photons for indistinguishable gases, while it grows linearly for distinguishable gases. This signature of bosonic bunching may be observed in optomechanical experiments, highlighting the potential of these systems for the realization of thermodynamic thought experiments in the quantum realm. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevLett.124.210601 SN - 0031-9007 SN - 1079-7114 VL - 124 IS - 21 PB - American Physical Society CY - College Park, Md. ER -