TY - JOUR A1 - Evsevleev, Sergei A1 - Paciornik, Sidnei A1 - Bruno, Giovanni T1 - Advanced deep learning-based 3D microstructural characterization of multiphase metal matrix composites JF - Advanced engineering materials N2 - The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models. KW - computed tomography KW - convolutional neural networks KW - deep learning KW - metal KW - matrix composites KW - segmentations Y1 - 2020 U6 - https://doi.org/10.1002/adem.201901197 SN - 1438-1656 SN - 1527-2648 VL - 22 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, Igor T1 - Determination of macroscopic stress from diffraction experiments BT - a critical discussion JF - Journal of applied physics N2 - The paper is motivated by some inconsistencies and contradictions present in the literature on the calculation of the so-called diffraction elastic constants. In an attempt at unifying the views that the two communities of Materials Science and Mechanics of Materials have on the subject, we revisit and define the terminology used in the field. We also clarify the limitations of the commonly used approaches and show that a unified methodology is also applicable to textured materials with a nearly arbitrary grain shape. We finally compare the predictions based on this methodology with experimental data obtained by in situ synchrotron radiation diffraction on additively manufactured Ti-6Al-4V alloy. We show that (a) the transverse isotropy of the material yields good agreement between the best-fit isotropy approximation (equivalent to the classic Kroner's model) and the experimental data and (b) the use of a general framework allows the calculation of all components of the tensor of diffraction elastic constants, which are not easily measurable by diffraction methods. This allows us to extend the current state-of-the-art with a predictive tool. Y1 - 2020 U6 - https://doi.org/10.1063/5.0009101 SN - 0021-8979 SN - 1089-7550 VL - 128 IS - 2 PB - American Institute of Physics CY - Melville ER -