TY - JOUR A1 - Großmann, Robert A1 - Aranson, Igor S. A1 - Peruani, Fernando T1 - A particle-field approach bridges phase separation and collective motion in active matter JF - Nature Communications N2 - Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media. Interacting self-propelled particles exhibit phase separation or collective motion depending on particle shape. A unified theory connecting these paradigms represents a major challenge in active matter, which the authors address here by modeling active particles as continuum fields. Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-18978-5 SN - 2041-1723 VL - 11 IS - 1 PB - Nature Publishing Group CY - London ER -